Nothing
#' Extract model fits from step 1 of PRC-LMM
#'
#' Utility function to extract the MLPMM summaries from a model fit
#' obtained through `fit_mlpmms`
#'
#' @param object the output of `fit_lmms`
#' @param yname a character giving the name of one of the longitudinal
#' outcomes modelled within one of the MLPMM
#' @param ... additional arguments
#'
#' @return The model summary as returned by `summary.multlcmm`
#'
#' @import lcmm
#' @export
#'
#' @author Mirko Signorelli
#' @references
#' Signorelli, M. (2024). pencal: an R Package for the Dynamic
#' Prediction of Survival with Many Longitudinal Predictors.
#' To appear in: The R Journal. Preprint: arXiv:2309.15600
#'
#' Signorelli, M., Spitali, P., Al-Khalili Szigyarto, C,
#' The MARK-MD Consortium, Tsonaka, R. (2021).
#' Penalized regression calibration: a method for the prediction
#' of survival outcomes using complex longitudinal and
#' high-dimensional data. Statistics in Medicine, 40 (27), 6178-6196.
#' DOI: 10.1002/sim.9178
#'
#' @seealso \code{\link{fit_mlpmms}} and \code{\link[lcmm]{summary.multlcmm}}
summary.mlpmmfit = function(object, yname, ...) {
if (!is.character(yname)) stop('yname should be a character value')
ynames = object$call.info$y.names
check = yname %in% do.call(c, ynames)
if (!check) {
mess = paste(yname, 'is not one of the response variables in',
deparse(substitute(object)))
stop(mess)
}
else {
requireNamespace('lcmm')
pos = which( sapply(ynames, function(x) yname %in% x) )
mlpmm = object$mlpmm.fits.orig[[pos]]
summary(mlpmm)
}
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.