R/subset.R

Defines functions subsetPredictions subset.perrySelect subset.perry

Documented in subset.perry subset.perrySelect

# --------------------------------------
# Author: Andreas Alfons
#         Erasmus Universiteit Rotterdam
# --------------------------------------

#' Subsetting resampling-based prediction error results
#' 
#' Extract subsets of resampling-based prediction error results.  
#' 
#' @method subset perry
#' 
#' @param x  an object inheriting from class \code{"perry"} or 
#' \code{"perrySelect"} that contains prediction error results.
#' @param subset  a character, integer or logical vector indicating the subset 
#' of models for which to keep the prediction error results.
#' @param select  a character, integer or logical vector indicating the 
#' prediction error results to be extracted.
#' @param \dots  currently ignored.
#' 
#' @return An object similar to \code{x} containing just the selected results.
#' 
#' @note Duplicate indices in \code{subset} or \code{select} are removed such 
#' that all models and prediction error results are unique.
#' 
#' @author Andreas Alfons
#' 
#' @seealso \code{\link{perryFit}}, \code{\link{perrySelect}}, 
#' \code{\link{perryTuning}}, \code{\link{subset}}
#' 
#' @example inst/doc/examples/example-subset.R
#' 
#' @keywords utilities
#' 
#' @export

subset.perry <- function(x, select = NULL, ...) {
  # initializations
  if(npe(x) == 0 || is.null(select)) return(x)
  peNames <- peNames(x)
  select <- checkSelect(select, peNames)
  # extract subset of results
  x$pe <- x$pe[select]
  x$se <- x$se[select]
  if(!is.null(reps <- x$reps)) x$reps <- reps[, select, drop=FALSE]
  x$yHat <- lapply(x$yHat, subsetPredictions, select, peNames, ncol(x$y))
  # return subset
  x
}


#' @rdname subset.perry
#' @method subset perrySelect
#' @export

subset.perrySelect <- function(x, subset = NULL, select = NULL, ...) {
  # initializations
  pe <- x$pe
  se <- x$se
  reps <- x$reps
  yHat <- x$yHat
  peNames <- peNames(x)
  if(!is.null(select)) select <- checkSelect(select, peNames)
  # extract subset of models
  if(is.null(subset)) {
    if(!is.null(select)) {
      x$best <- x$best[select]
      x$yHat <- lapply(yHat, function(yHat, select, p) {
        lapply(yHat, subsetPredictions, select, peNames, p)
      }, select, ncol(x$y))
      select <- c("Fit", select)  # also select column describing models
      x$pe <- pe[, select, drop=FALSE]
      x$se <- se[, select, drop=FALSE]
      if(!is.null(reps)) x$reps <- reps[, select, drop=FALSE]
    }
  } else {
    # further initializations
    fits <- fits(x)
    subset <- checkSelect(subset, fits, returnNames=FALSE)
    # extract predictions
    yHat <- yHat[subset]
    if(!is.null(select)) {
      yHat <- lapply(yHat, function(yHat, select, p) {
        lapply(yHat, subsetPredictions, select, peNames, p)
      }, select, ncol(x$y))
    }
    x$yHat <- yHat
    # extract results for the models to keep
    if(is.null(select)) {
      pe <- pe[subset, , drop=FALSE]
      se <- se[subset, , drop=FALSE]
    } else {
      select <- c("Fit", select)  # include column describing models
      pe <- pe[subset, select, drop=FALSE]
      se <- se[subset, select, drop=FALSE]
    }
    x$pe <- pe
    x$se <- se
    # extract the CV replicates for the models to keep
    if(!is.null(reps)) {
      # get list indices of replicates for each model, select the list 
      # components to keep, and flatten the list to an index vector
      indices <- split(seq_len(nrow(reps)), reps$Fit)[subset]
      indices <- unlist(indices, use.names=FALSE)
      # use index vector to extract CV replicates
      if(is.null(select)) x$reps <- reps[indices, , drop=FALSE]
      else x$reps <- reps[indices, select, drop=FALSE]
    }
    # find best model among the remaining ones
    if(nrow(pe) > 0 && ncol(pe) > 1) {
      best <- selectBest(pe, se, method=x$selectBest, seFactor=x$seFactor)
      x[names(best)] <- best
    } else x$best <- x$best[integer()]  # this ensures empty integer vector
    # extract tuning parameters for the models to keep if applicable
    if(inherits(x, "perryTuning")) x$tuning <- x$tuning[subset, , drop=FALSE]
    # make sure that fits of subset are correct
    fits <- fits[subset]  # models to keep
    haveFactor <- is.factor(fits)
    if(haveFactor) {
      # for a factor, unused levels should be dropped and 
      # remaining levels should be in the right order
      fits <- as.character(fits)
      fits <- factor(fits, levels=fits)
    }
    fits(x) <- fits
  }
  # remove final model and return subset
  if(inherits(x, "perryTuning")) x$finalModel <- NULL
  x
}


# extract subsets of predictions
# p ......... number of columns in the response
# peNames ... names of prediction error results
subsetPredictions <- function(yHat, select, peNames, p) {
  q <- ncol(yHat)
  if(is.null(q)) {
    # univariate response and predictions
    yHat <- as.matrix(yHat)
    colnames(yHat) <- peNames
    yHat[, select]
  } else if(isTRUE(p == q) && q > 1) {
    # multivariate response
    if(length(select) == 0) yHat[, select] else yHat
  } else {
    # univariate response and multiple predictions
    yHat[, select]
  }
}

Try the perry package in your browser

Any scripts or data that you put into this service are public.

perry documentation built on Nov. 3, 2021, 5:08 p.m.