View source: R/f_phyclust_em_step.r
| phyclust.em.step | R Documentation |
This is a single EM-step of phyclust.
phyclust.em.step(X, ret.phyclust = NULL, K = NULL, Eta = NULL,
Mu = NULL, pi = NULL, kappa = NULL, Tt = NULL,
substitution.model = NULL, identifier = NULL, code.type = NULL,
label = NULL)
X |
nid/sid matrix with |
ret.phyclust |
an object with the class |
K |
number of clusters. |
Eta |
proportion of subpopulations, |
Mu |
centers of subpopulations, dim = |
pi |
equilibrium probabilities, each row sums to 1. |
kappa |
transition and transversion bias. |
Tt |
total evolution time, |
substitution.model |
substitution model. |
identifier |
identifier. |
code.type |
code type. |
label |
label of sequences for semi-supervised clustering. |
X should be a numerical matrix containing sequence data that
can be transfered by code2nid or code2sid.
Either input ret.phyclust or all other arguments for this function.
ret.phyclust can be obtained either from an EM iteration of
phyclust or from a M step of phyclust.m.step.
If label is inputted, the label information will be used
the EM-step, even the ret.phyclust is the result of unsupervised
clustering.
This function returns an object with class phyclust.
Wei-Chen Chen wccsnow@gmail.com
Phylogenetic Clustering Website: https://snoweye.github.io/phyclust/
phyclust,
phyclust.e.step,
phyclust.m.step.
library(phyclust, quiet = TRUE)
set.seed(1234)
EMC.1 <- .EMC
EMC.1$EM.iter <- 1
# the same as EMC.1 <- .EMControl(EM.iter = 1)
X <- seq.data.toy$org
ret.1 <- phyclust(X, 2, EMC = EMC.1)
ret.2 <- phyclust.em.step(X, ret.phyclust = ret.1)
str(ret.2)
# For semi-supervised clustering.
semi.label <- rep(0, nrow(X))
semi.label[1:3] <- 1
ret.3 <- phyclust.em.step(X, ret.phyclust = ret.1, label = semi.label)
str(ret.3)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.