Nothing
#' Selects a random neighbour for the simulated annealing algorithm.
#'
#' @keywords internal
#'
#' @param Fn xx
#' @param Temp xx
#' @param chlv xx
#' @param s_c xx
#' @param place xx
#' @param S xx
#' @param cm xx
#' @param min.val xx
#' @param max.val xx
#'
#' @return
#'
#' @examples
#' @importFrom stats runif
Random_neighbour2 <- function(Fn, Temp, chlv, s_c, place, S, cm, min.val, max.val){
s_c <- vectorise(s_c[,1:ncol(s_c)-1])
SE <- Wrangling(Fn, min.val, max.val)[[3]]
minF <- Wrangling(Fn, min.val, max.val)[[1]]
maxF <- Wrangling(Fn, min.val, max.val)[[2]]
ki <- maxF-minF
rand <- round(runif(n = length(s_c), -1, 1),4)
SA <- (SE + (Temp) *ki*rand)
SA <- as.vector(unlist(SA))
d <- which(SA < minF | SA > maxF)
length(d)
loop <- 1
while (length(d) >0){
loop = loop +1
nr <- round(runif(length(d),-1,1),4)
minr <- as.vector(unlist(minF))
maxr <- as.vector(unlist(maxF))
mind <- minr[d]
maxd <- maxr[d]
kir <- maxd-mind
SA2 <- (SE[d] +(Temp)*kir*nr)
SA[d] <- SA2
d <- which(SA < minF | SA > maxF)
#print(loop)
if (loop > 50){
nn <- (minF[d]+maxF[d])/2
f <- round(runif(n=length(d),(minF[d]*1.20),(maxF[d]*0.80)),4)
SA[d] <- f
d <- which(SA < minF | SA > maxF)
}
}
Fn <- Fn[,1:ncol(Fn)-1] #### If error is lower, reassign the values
Fn[Fn >0] <- SA
Fn <- cbind(Fn,chlv)
colnames(Fn) <- colnames(F)
F.n <- NNLS_MF(Fn, S, cm)
return(F.n)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.