%~~% | R Documentation |
Specifies correlated errors among predictors
e1 %~~% e2
e1 |
first variable involved in correlated error |
e2 |
second variable involved in correlated error |
For use in psem
to identify correlated sets of variables.
Jon Lefcheck <LefcheckJ@si.edu>, Jarrett Byrnes
cerror
# Generate example data
dat <- data.frame(x1 = runif(50),
x2 = runif(50), y1 = runif(50),
y2 = runif(50))
# Create list of structural equations
sem <- psem(
lm(y1 ~ x1 + x2, dat),
lm(y2 ~ y1 + x1, dat)
)
# Look at correlated error between x1 and x2
# (exogenous)
cerror(x1 %~~% x2, sem, dat)
# Same as cor.test
with(dat, cor.test(x1, x2))
# Look at correlatde error between x1 and y1
# (endogenous)
cerror(y1 %~~% x1, sem, dat)
# Not the same as cor.test
# (accounts for influence of x1 and x2 on y1)
with(dat, cor.test(y1, x1))
# Specify in psem
sem <- update(sem, x1 %~~% y1)
coefs(sem)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.