plgp: Particle Learning of Gaussian Processes
Version 1.1-7

Sequential Monte Carlo inference for fully Bayesian Gaussian process (GP) regression and classification models by particle learning (PL). The sequential nature of inference and the active learning (AL) hooks provided facilitate thrifty sequential design (by entropy) and optimization (by improvement) for classification and regression models, respectively. This package essentially provides a generic PL interface, and functions (arguments to the interface) which implement the GP models and AL heuristics. Functions for a special, linked, regression/classification GP model and an integrated expected conditional improvement (IECI) statistic is provides for optimization in the presence of unknown constraints. Separable and isotropic Gaussian, and single-index correlation functions are supported. See the examples section of ?plgp and demo(package="plgp") for an index of demos

Package details

AuthorRobert B. Gramacy <[email protected]>
Date of publication2014-12-02 00:14:32
MaintainerRobert B. Gramacy <[email protected]>
Package repositoryView on CRAN
Installation Install the latest version of this package by entering the following in R:

Try the plgp package in your browser

Any scripts or data that you put into this service are public.

plgp documentation built on May 29, 2017, 9:22 p.m.