| params.GP | R Documentation |
Extract parameters from particles for Gaussian process (GP) regression, classification, or combined unknown constraint models
params.GP() params.CGP() params.ConstGP()
Collects the parameters from each of the particles (contained in
the global variable peach) into a
data.frame that can be used for quick
summary and visualization, e.g., via
hist. These functions are also called to make
progress visualizations in PL
returns a data.frame containing summaries for each
parameter in its columns
Robert B. Gramacy, rbg@vt.edu
Gramacy, R. and Polson, N. (2011). “Particle learning of Gaussian process models for sequential design and optimization.” Journal of Computational and Graphical Statistics, 20(1), pp. 102-118; arXiv:0909.5262
Gramacy, R. and Lee, H. (2010). “Optimization under unknown constraints”. Bayesian Statistics 9, J. M. Bernardo, M. J. Bayarri, J. O. Berger, A. P. Dawid, D. Heckerman, A. F. M. Smith and M. West (Eds.); Oxford University Press
Gramacy, R. (2020). “Surrogates: Gaussian Process Modeling, Design and Optimization for the Applied Sciences”. Chapman Hall/CRC; https://bobby.gramacy.com/surrogates/
https://bobby.gramacy.com/r_packages/plgp/
PL, lpredprob.GP,
propagate.GP, init.GP,
pred.GP
## See the demos via demo(package="plgp") and the examples ## section of ?plgp
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.