geom_rocci | R Documentation |
Display rectangular confidence regions for the empirical ROC curve.
geom_rocci(
mapping = NULL,
data = NULL,
stat = "rocci",
ci.at = NULL,
sig.level = 0.05,
na.rm = TRUE,
alpha.box = 0.3,
labels = TRUE,
labelsize = 3.88,
labelround = 1,
position = "identity",
show.legend = NA,
inherit.aes = TRUE,
...
)
GeomRocci
mapping |
Set of aesthetic mappings created by |
data |
The data to be displayed in this layer. There are three options: If A A |
stat |
Use to override the default connection between
|
ci.at |
Vector of values in the range of the biomarker where confidence regions will be displayed |
sig.level |
Significance level for the confidence regions |
na.rm |
If |
alpha.box |
Alpha level for the confidence regions |
labels |
If TRUE, adds text labels for the cutoffs where the confidence regions are displayed |
labelsize |
Size of cutoff text labels |
labelround |
Integer, number of significant digits to round cutoff labels |
position |
Position adjustment, either as a string naming the adjustment
(e.g. |
show.legend |
logical. Should this layer be included in the legends?
|
inherit.aes |
If |
... |
Other arguments passed on to |
An object of class GeomRocci
(inherits from Geom
, ggproto
, gg
) of length 6.
geom_rocci
understands the following aesthetics (required aesthetics
are in bold). stat_rocci
automatically maps the estimates to the required aesthetics:
x
The FPF estimate
y
The TPF estimate
xmin
Lower confidence limit for the FPF
xmax
Upper confidence limit for the FPF
ymin
Lower confidence limit for the TPF
ymax
Upper confidence limit for the TPF
alpha
color
fill
linetype
size
See geom_roc
for the empirical ROC curve, style_roc
for
adding guidelines and labels, and direct_label
for adding direct labels to the
curves. Also export_interactive_roc for creating interactive ROC curve plots for use in a web browser.
D.ex <- rbinom(50, 1, .5)
rocdata <- data.frame(D = c(D.ex, D.ex),
M = c(rnorm(50, mean = D.ex, sd = .4), rnorm(50, mean = D.ex, sd = 1)),
Z = c(rep("A", 50), rep("B", 50)))
ggplot(rocdata, aes(m = M, d = D)) + geom_roc() + geom_rocci()
ggplot(rocdata, aes(m = M, d = D, color = Z)) + geom_roc() + geom_rocci()
ggplot(rocdata, aes(m = M, d = D, color = Z)) + geom_roc() + geom_rocci(sig.level = .01)
ggplot(rocdata, aes(m = M, d = D)) + geom_roc(n.cuts = 0) +
geom_rocci(ci.at = quantile(rocdata$M, c(.1, .25, .5, .75, .9)))
ggplot(rocdata, aes(m = M, d = D, color = Z)) + geom_roc() + geom_rocci(linetype = 1)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.