Nothing
#' Summarise a data frame.
#'
#' Summarise works in an analogous way to \code{\link{mutate}}, except
#' instead of adding columns to an existing data frame, it creates a new
#' data frame. This is particularly useful in conjunction with
#' \code{\link{ddply}} as it makes it easy to perform group-wise summaries.
#'
#' @param .data the data frame to be summarised
#' @param ... further arguments of the form var = value
#' @keywords manip
#' @aliases summarise summarize
#' @export summarise summarize
#' @note Be careful when using existing variable names; the corresponding
#' columns will be immediately updated with the new data and this can affect
#' subsequent operations referring to those variables.
#' @examples
#' # Let's extract the number of teams and total period of time
#' # covered by the baseball dataframe
#' summarise(baseball,
#' duration = max(year) - min(year),
#' nteams = length(unique(team)))
#' # Combine with ddply to do that for each separate id
#' ddply(baseball, "id", summarise,
#' duration = max(year) - min(year),
#' nteams = length(unique(team)))
summarise <- function(.data, ...) {
stopifnot(is.data.frame(.data) || is.list(.data) || is.environment(.data))
cols <- as.list(substitute(list(...))[-1])
# ... not a named list, figure out names by deparsing call
if(is.null(names(cols))) {
missing_names <- rep(TRUE, length(cols))
} else {
missing_names <- names(cols) == ""
}
if (any(missing_names)) {
names <- unname(unlist(lapply(match.call(expand.dots = FALSE)$`...`, deparse))) # nolint
names(cols)[missing_names] <- names[missing_names]
}
.data <- as.list(.data)
for (col in names(cols)) {
.data[[col]] <- eval(cols[[col]], .data, parent.frame())
}
quickdf(.data[names(cols)])
}
summarize <- summarise
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.