| trelli_foldchange_bar | R Documentation | 
Specify a plot design and cognostics for the fold_change barchart trelliscope. Fold change must be grouped by edata_cname.
trelli_foldchange_bar(
  trelliData,
  cognostics = c("fold change", "p-value"),
  p_value_thresh = 0.05,
  ggplot_params = NULL,
  interactive = FALSE,
  path = .getDownloadsFolder(),
  name = "Trelliscope",
  test_mode = FALSE,
  test_example = 1,
  single_plot = FALSE,
  ...
)
| trelliData | A trelliscope data object with statRes results. Required. | 
| cognostics | A vector of cognostic options for each plot. Valid entries and the defaults are "fold change" and "p-value". If the omics data is MS/NMR, p-value will be the results from the ANOVA test. If the omics data is sedData, the p-value will be the results from the function "diffexp_seq". | 
| p_value_thresh | A value between 0 and 1 to indicate significant biomolecules for p_value_test. Default is 0.05. | 
| ggplot_params | An optional vector of strings of ggplot parameters to the backend ggplot function. For example, c("ylab(”)", "xlab(”)"). Default is NULL. | 
| interactive | A logical argument indicating whether the plots should be interactive or not. Interactive plots are ggplots piped to ggplotly (for now). Default is FALSE. | 
| path | The base directory of the trelliscope application. Default is Downloads. | 
| name | The name of the display. Default is Trelliscope. | 
| test_mode | A logical to return a smaller trelliscope to confirm plot and design. Default is FALSE. | 
| test_example | A vector of plot indices to return for test_mode. Default is 1. | 
| single_plot | A TRUE/FALSE to indicate whether 1 plot (not a trelliscope) should be returned. Default is FALSE. | 
| ... | Additional arguments to be passed on to the trelli builder | 
No return value, builds a trelliscope display of fold_change bar plots that is stored in 'path'
David Degnan, Lisa Bramer
if (interactive()) {
library(pmartRdata)
# Transform the data
omicsData <- edata_transform(omicsData = pep_object, data_scale = "log2")
# Group the data by condition
omicsData <- group_designation(omicsData = omicsData, main_effects = c("Phenotype"))
# Apply the IMD ANOVA filter
imdanova_Filt <- imdanova_filter(omicsData = omicsData)
omicsData <- applyFilt(filter_object = imdanova_Filt, omicsData = omicsData,
                       min_nonmiss_anova = 2)
# Normalize my pepData
omicsData <- normalize_global(omicsData, "subset_fn" = "all", "norm_fn" = "median",
                             "apply_norm" = TRUE, "backtransform" = TRUE)
# Implement the IMD ANOVA method and compute all pairwise comparisons 
# (i.e. leave the `comparisons` argument NULL)
statRes <- imd_anova(omicsData = omicsData, test_method = 'combined')
# Generate the trelliData object
trelliData3 <- as.trelliData(statRes = statRes)
trelliData4 <- as.trelliData(omicsData = omicsData, statRes = statRes)
# Build fold_change bar plot with statRes data grouped by edata_colname.
trelli_panel_by(trelliData = trelliData3, panel = "Peptide") %>% 
  trelli_foldchange_bar(test_mode = TRUE, test_example = 1:10, path = tempdir())
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.