Description Usage Arguments Details Value Author(s) See Also Examples
Plots probability density function given the parameters. May be useful when investigating parameter choice for prior distributions.
| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 | DistributionPlotBinomial(size = 200, prob = 0.5,
xlab = "Number of Successes", ylab = "Probability Mass", signif.digits = 3,
main = paste("Binomial Distribution: n =", size, "p =",
signif(prob, digits = signif.digits)))
DistributionPlotGamma(shape = 1, rate = 1, length = 100, xlab = "x",
ylab = "Density", main = bquote(paste("Gamma Distribution: ", alpha,
"=", .(signif(shape, digits = signif.digits)), ",", beta, "=",
.(signif(rate, digits = signif.digits)))), signif.digits = 3)
DistributionPlotNorm(mean = 0, sd = 1, length = 100, xlab = "x", ylab =
"Density", main = bquote(paste("Normal Distribution: ", mu, "=",
.(signif(mean, digits = signif.digits)), ",", sigma, "=", .(signif(sd,
digits = signif.digits)))), signif.digits = 3)
 | 
| size | number of trials (Binomial) | 
| prob | probability of success (Binomial) | 
| shape | shape parameter. Must be strictly positive. (Gamma) | 
| rate | an alternative way to specify the scale (Gamma) | 
| mean | mean (Normal) | 
| sd | standard deviation (Normal) | 
| xlab | x-axis label | 
| ylab | y-axis label | 
| signif.digits | number of significant digits for default
 | 
| main | title for plot | 
| length | Number of points to use for obtaining a smooth curve | 
Based on functions in package Rcmdr
None.
Peter Baker p.baker1@uq.edu.au
Rcmdr Binomial
Normal GammaDist 
| 1 2 3 4 5 6 7 8 9 | ## Binomial distribution
DistributionPlotBinomial()
DistributionPlotBinomial(size=20, prob=0.2)
## Gamma distribution
DistributionPlotGamma()
## Normal distribution
DistributionPlotNorm()
 | 
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.