# make.leslie.matrix: Make Leslie Matrix In popReconstruct: Reconstruct Human Populations of the Recent Past

## Description

Constructs the Leslie Matrix needed for cohort component projection.

## Usage

 `1` ```make.leslie.matrix(pop, surv, fert, srb = 1.05, age.int = 5, label.dims = FALSE) ```

## Arguments

 `pop` Population count at baseline. `surv` Survivorship probabilities: the probability of reaching the age at the start of the interval. The first row should be nL0/(n*l0). The last row is survival for age.int years in the open interval. `fert` Matrix of age specific fertility rates NOT yet mulitplied by age.int. `srb` Sex ratio at birth (matrix or scalar). `age.int` Width of the age intervals; needed for correct interpretation of survival probabilities and fertility rates. `label.dims` Should row and column names be set? Aesthetic.

## Details

This function is used in the calculation of the average annual net number of migrants. See the vignette `burkina-faso-females` for an example of its use.

## Value

A Leslie matrix as a matrix object.

## Vignettes

`burkina-faso-females`

Mark C. Wheldon

## References

Preston, S. H., Heuveline, P. and Guillot, M. (2001) Demography, chapter 6. Malden, MA: Blackwell.

`popRecon.ccmp.female`, `net.number.migrants`

## Examples

 ```1 2 3 4 5 6 7``` ```example(popRecon.ccmp.female) (Lk <- make.leslie.matrix(pop = pop.input.mat[,1] ,surv = burkina.faso.females\$survival.proportions[,1] ,fert = burkina.faso.females\$fertility.rates[,1] ,srb = 1.05 ,age.int = 5)) ```

### Example output

```Loading required package: coda

ppRc..> data(burkina_faso_females)

ppRc..> (pop.input.mat <-
ppRc..+     popRecon.ccmp.female(pop=burkina.faso.females\$baseline.pop.counts
ppRc..+                       ,surv=burkina.faso.females\$survival.proportions
ppRc..+                       ,fert=burkina.faso.females\$fertility.rates
ppRc..+                       ,mig=burkina.faso.females\$migration.proportions
ppRc..+                       ))
[,1]       [,2]       [,3]       [,4]       [,5]       [,6]       [,7]
[1,] 386000 496963.688 553279.776 605122.263 687150.308 795208.536 914376.040
[2,] 292000 338995.727 444396.528 500213.483 552487.573 632644.932 735566.439
[3,] 260000 283642.516 330447.405 434412.243 490189.352 542556.373 622294.440
[4,] 244000 246278.270 270115.663 316003.052 417493.093 470378.768 521239.005
[5,] 207000 221576.949 224450.169 247736.574 291322.622 387113.613 435658.724
[6,] 175000 186062.343 200439.586 203773.553 226440.844 267704.942 357791.216
[7,] 153000 156791.159 167916.942 181898.908 185506.394 207461.542 246427.789
[8,] 135000 136059.686 140456.826 151475.723 164992.858 168764.539 189907.129
[9,] 117000 118338.831 120232.254 125079.907 135905.215 148891.568 152765.468
[10,]  98000 100304.139 102441.076 105028.794 110220.189 120751.178 133131.487
[11,]  78000  81282.772  84201.624  86990.038  90142.111  95552.187 105667.976
[12,]  60000  63137.000  66810.877  70264.782  73614.763  77258.457  82846.087
[13,]  43000  46416.989  49774.054  53708.538  57529.826  61306.324  65380.083
[14,]  29000  29954.307  33064.417  36336.814  40137.388  43957.286  47879.074
[15,]  17000  17193.530  18217.493  20722.535  23444.345  26639.236  30047.166
[16,]   8000   7730.870   8046.969   8842.486  10420.995  12213.805  14430.576
[17,]   2000   2965.314   3186.973   3494.269   4008.592   4906.748   6111.374
[,8]        [,9]      [,10]
[1,] 1033996.879 1158134.105 1369041.17
[2,]  848330.217  964879.639 1088715.23
[3,]  724519.032  836697.861  952860.73
[4,]  599148.299  698673.579  846073.20
[5,]  483615.125  557494.775  719894.38
[6,]  402180.255  447437.234  572001.86
[7,]  331145.222  371710.173  458905.67
[8,]  226610.907  306195.173  379925.83
[9,]  173019.647  207467.392  309642.33
[10,]  137082.748  156368.113  208006.24
[11,]  117356.990  121365.361  154298.67
[12,]   92546.531  103651.454  114066.08
[13,]   71116.143   80367.432   90879.78
[14,]   52091.893   57560.954   65876.04
[15,]   33648.268   37389.225   41985.79
[16,]   16905.919   19459.431   22044.43
[17,]    7694.051    9487.132   11332.85
[,1]      [,2]      [,3]      [,4]      [,5]      [,6]      [,7]
[1,] 0.0000000 0.0000000 0.2090608 0.5400452 0.6110685 0.5131988 0.3952854
[2,] 0.8782273 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
[3,] 0.0000000 0.9713785 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
[4,] 0.0000000 0.0000000 0.9730318 0.0000000 0.0000000 0.0000000 0.0000000
[5,] 0.0000000 0.0000000 0.0000000 0.9577709 0.0000000 0.0000000 0.0000000
[6,] 0.0000000 0.0000000 0.0000000 0.0000000 0.9481755 0.0000000 0.0000000
[7,] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.9460075 0.0000000
[8,] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.9393766
[9,] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
[10,] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
[11,] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
[12,] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
[13,] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
[14,] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
[15,] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
[16,] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
[17,] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
[,8]      [,9]      [,10]    [,11]     [,12]     [,13]     [,14]
[1,] 0.2440665 0.1012326 0.01816255 0.000000 0.0000000 0.0000000 0.0000000
[2,] 0.0000000 0.0000000 0.00000000 0.000000 0.0000000 0.0000000 0.0000000
[3,] 0.0000000 0.0000000 0.00000000 0.000000 0.0000000 0.0000000 0.0000000
[4,] 0.0000000 0.0000000 0.00000000 0.000000 0.0000000 0.0000000 0.0000000
[5,] 0.0000000 0.0000000 0.00000000 0.000000 0.0000000 0.0000000 0.0000000
[6,] 0.0000000 0.0000000 0.00000000 0.000000 0.0000000 0.0000000 0.0000000
[7,] 0.0000000 0.0000000 0.00000000 0.000000 0.0000000 0.0000000 0.0000000
[8,] 0.0000000 0.0000000 0.00000000 0.000000 0.0000000 0.0000000 0.0000000
[9,] 0.9258789 0.0000000 0.00000000 0.000000 0.0000000 0.0000000 0.0000000
[10,] 0.0000000 0.9052283 0.00000000 0.000000 0.0000000 0.0000000 0.0000000
[11,] 0.0000000 0.0000000 0.87537666 0.000000 0.0000000 0.0000000 0.0000000
[12,] 0.0000000 0.0000000 0.00000000 0.832338 0.0000000 0.0000000 0.0000000
[13,] 0.0000000 0.0000000 0.00000000 0.000000 0.7736165 0.0000000 0.0000000
[14,] 0.0000000 0.0000000 0.00000000 0.000000 0.0000000 0.6966118 0.0000000
[15,] 0.0000000 0.0000000 0.00000000 0.000000 0.0000000 0.0000000 0.5928803
[16,] 0.0000000 0.0000000 0.00000000 0.000000 0.0000000 0.0000000 0.0000000
[17,] 0.0000000 0.0000000 0.00000000 0.000000 0.0000000 0.0000000 0.0000000
[,15]     [,16]     [,17]
[1,] 0.0000000 0.0000000 0.0000000
[2,] 0.0000000 0.0000000 0.0000000
[3,] 0.0000000 0.0000000 0.0000000
[4,] 0.0000000 0.0000000 0.0000000
[5,] 0.0000000 0.0000000 0.0000000
[6,] 0.0000000 0.0000000 0.0000000
[7,] 0.0000000 0.0000000 0.0000000
[8,] 0.0000000 0.0000000 0.0000000
[9,] 0.0000000 0.0000000 0.0000000
[10,] 0.0000000 0.0000000 0.0000000
[11,] 0.0000000 0.0000000 0.0000000
[12,] 0.0000000 0.0000000 0.0000000
[13,] 0.0000000 0.0000000 0.0000000
[14,] 0.0000000 0.0000000 0.0000000
[15,] 0.0000000 0.0000000 0.0000000
[16,] 0.4547571 0.0000000 0.0000000
[17,] 0.0000000 0.3181678 0.2099861
```

popReconstruct documentation built on Dec. 1, 2019, 1:27 a.m.