View source: R/ridgeGLMandCo.R
ridgeGLMdof | R Documentation |
Function that evaluates the degrees of freedom of the generalized ridge estimator of the regression parameter of generalized linear models.
ridgeGLMdof(X, U=matrix(ncol=0, nrow=nrow(X)), lambda,
lambdaG, Dg=matrix(0, ncol=ncol(X), nrow=ncol(X)),
model="linear", linPred=rep(0,nrow(X)))
X |
The design |
U |
The design |
lambda |
A positive |
lambdaG |
A positive |
Dg |
A non-negative definite |
model |
A |
linPred |
A |
The degrees of freedom of the regular ridge regression estimator is usually defined the trace of the ridge hat matrix: \mbox{tr} [ \mathbf{X} (\mathbf{X}^{\top} \mathbf{X} + \lambda \mathbf{I}_{pp})^{-1} \mathbf{X}^{\top}]
. That of the regular ridge logistic regression estimator is defined analoguously by Park, Hastie (2008). Lettink et al. (2022) translates these definitions to the generalized ridge (logistic) regression case.
A numeric
, the degrees of freedom consumed by the (generalized) ridge (logistic) regression estimator.
W.N. van Wieringen.
Park, M. Y., & Hastie, T. (2008). Penalized logistic regression for detecting gene interactions. Biostatistics, 9(1), 30-50.
Lettink, A., Chinapaw, M.J.M., van Wieringen, W.N. (2022), "Two-dimensional fused targeted ridge regression for health indicator prediction from accelerometer data", submitted.
# set the sample size
n <- 50
# set the true parameter
betas <- (c(0:100) - 50) / 20
# generate covariate data
X <- matrix(rnorm(length(betas)*n), nrow=n)
# set the penalty parameter
lambda <- 3
# estimate the logistic regression parameter
dofs <- ridgeGLMdof(X, lambda=lambda, lambdaG=0,
model="logistic",
linPred=tcrossprod(X, t(betas)))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.