View source: R/ridgePrepAndCo.R
ridgePrep | R Documentation |
Estimation of the precision matrix from data with replicates through a ridge penalized EM (Expectation-Maximization) algorithm. It assumes a simple 'signal+noise' model, both random variables are assumed to be drawn from a multivariate normal distribution with their own unstructured precision matrix. These precision matrices are estimated.
ridgePrep(Y, ids, lambdaZ, lambdaE,
targetZ=matrix(0, ncol(Y), ncol(Y)),
targetE=matrix(0, ncol(Y), ncol(Y)),
nInit=100, minSuccDiff=10^(-10))
Y |
Data |
ids |
A |
lambdaZ |
A positive |
lambdaE |
A positive |
targetZ |
A semi-positive definite target |
targetE |
A semi-positive definite target |
nInit |
A |
minSuccDiff |
A |
Data are assumed to originate from a design with replicates. Each observation \mathbf{Y}_{i,k_i}
with k_i
(k_i = 1, \ldots, K_i
) the k_i
-th replicate of the i
-th sample, is described by a ‘signal+noise’ model: \mathbf{Y}_{i,k_i} = \mathbf{Z}_i + \boldsymbol{\varepsilon}_{i,k_i}
, where \mathbf{Z}_i
and \boldsymbol{\varepsilon}_{i,k_i}
represent the signal and noise, respectively. Each observation \mathbf{Y}_{i,k_i}
follows a multivariate normal law of the form
\mathbf{Y}_{i,k_i} \sim \mathcal{N}(\mathbf{0}_p, \boldsymbol{\Omega}_z^{-1} + \boldsymbol{\Omega}_{\varepsilon}^{-1})
, which results from the distributional assumptions of the signal and the noise, \mathbf{Z}_{i} \sim \mathcal{N}(\mathbf{0}_p, \boldsymbol{\Omega}_z^{-1})
and \boldsymbol{\varepsilon}_{i, k_i} \sim \mathcal{N}(\mathbf{0}_p, \boldsymbol{\Omega}_{\varepsilon}^{-1})
, and their independence. The model parameters are estimated by means of a penalized EM algorithm that maximizes the loglikelihood augmented with the penalty \lambda_z \| \boldsymbol{\Omega}_z - \mathbf{T}_z \|_F^2 + \lambda_{\varepsilon} \| \boldsymbol{\Omega}_{\varepsilon} - \mathbf{T}_{\varepsilon} \|_F^2
, in which \mathbf{T}_z
and \mathbf{T}_{\varepsilon}
are the shrinkage targets of the signal and noise precision matrices, respectively. For more details see van Wieringen and Chen (2019).
The function returns the regularized inverse covariance list
-object with slots:
Pz |
The estimated signal precision matrix. |
Pz |
The estimated error precision matrix. |
penLL |
The penalized loglikelihood of the estimated model. |
W.N. van Wieringen.
van Wieringen, W.N., Chen, Y. (2021), "Penalized estimation of the Gaussian graphical model from data with replicates", Statistics in Medicine, 40(19), 4279-4293.
optPenaltyPrep.kCVauto
# set parameters
p <- 10
Se <- diag(runif(p))
Sz <- matrix(3, p, p)
diag(Sz) <- 4
# draw data
n <- 100
ids <- numeric()
Y <- numeric()
for (i in 1:n){
Ki <- sample(2:5, 1)
Zi <- mvtnorm::rmvnorm(1, sigma=Sz)
for (k in 1:Ki){
Y <- rbind(Y, Zi + mvtnorm::rmvnorm(1, sigma=Se))
ids <- c(ids, i)
}
}
# estimate
Ps <- ridgePrep(Y, ids, 1, 1)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.