View source: R/ridgePgenAndCo.R
| ridgePgen.kCV.banded | R Documentation | 
Function that calculates of the k-fold cross-validated negative (!) loglikelihood of the generalized ridge precision estimator, with a penalization that encourages a banded precision matrix.
ridgePgen.kCV.banded(lambda, Y, fold=nrow(Y), target, 
                     zeros=matrix(nrow=0, ncol=2), 
                     penalize.diag=TRUE, nInit=100, 
                     minSuccDiff=10^(-5)) 
lambda | 
  A   | 
Y | 
  Data   | 
fold | 
  A   | 
target | 
  A semi-positive definite target   | 
zeros | 
  A two-column   | 
penalize.diag | 
  A   | 
nInit | 
  A   | 
minSuccDiff | 
  A   | 
The penalty matrix \boldsymbol{\Lambda} is parametrized as follows. The elements of \boldsymbol{\Lambda} are (\boldsymbol{\Lambda})_{j,j'} = \lambda (| j - j'| + 1) for 
j, j' = 1, \ldots, p.
The function returns a numeric containing the cross-validated negative loglikelihood.
W.N. van Wieringen.
van Wieringen, W.N. (2019), "The generalized ridge estimator of the inverse covariance matrix", Journal of Computational and Graphical Statistics, 28(4), 932-942.
ridgePgen
# set dimension and sample size
p <- 10
n <- 10
# penalty parameter matrix
lambda       <- matrix(1, p, p)
diag(lambda) <- 0.1
# generate precision matrix
Omega       <- matrix(0.4, p, p)
diag(Omega) <- 1
Sigma       <- solve(Omega)
# data 
Y <- mvtnorm::rmvnorm(n, mean=rep(0,p), sigma=Sigma)
S <- cov(Y)
# find optimal penalty parameters through cross-validation
lambdaOpt <- optPenaltyPgen.kCVauto.banded(Y, 10^(-10), 10^(10),
                          target=matrix(0, p, p),
                          penalize.diag=FALSE, nInit=100, 
                          minSuccDiff=10^(-5)) 
# format the penalty matrix
lambdaOptMat <- matrix(NA, p, p)
for (j1 in 1:p){
    for (j2 in 1:p){
        lambdaOptMat[j1, j2] <- lambdaOpt * (abs(j1-j2)+1)
    }
}
# generalized ridge precision estimate
Phat <- ridgePgen(S, lambdaOptMat, matrix(0, p, p))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.