Nothing
## ----include = FALSE----------------------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>"
)
## ----setup, message = FALSE---------------------------------------------------
library(postcard)
withr::local_seed(1395878)
withr::local_options(list(postcard.verbose = 0))
## ----dat-sim------------------------------------------------------------------
n <- 1000
b0 <- 1
b1 <- 3
b2 <- 2
# Simulate data with a non-linear effect
dat_treat <- glm_data(
Y ~ b0+b1*sin(W)^2+b2*A,
W = runif(n, min = -2, max = 2),
A = rbinom(n, 1, prob = 1/2),
family = gaussian() # Default value
)
## ----noprog-run---------------------------------------------------------------
ate <- rctglm(formula = Y ~ A * W,
exposure_indicator = A,
exposure_prob = 1/2,
data = dat_treat,
family = "gaussian") # Default value
## ----noprog-show--------------------------------------------------------------
ate
## -----------------------------------------------------------------------------
est(ate)
## ----hist-data----------------------------------------------------------------
dat_notreat <- glm_data(
Y ~ b0+b1*sin(W)^2,
W = runif(n, min = -2, max = 2),
family = gaussian # Default value
)
## ----prog-run-----------------------------------------------------------------
ate_prog <- rctglm_with_prognosticscore(
formula = Y ~ A * W,
exposure_indicator = A,
exposure_prob = 1/2,
data = dat_treat,
family = gaussian(link = "identity"), # Default value
data_hist = dat_notreat)
## ----prog-show----------------------------------------------------------------
ate_prog
## -----------------------------------------------------------------------------
pred_mod <- glm(Y ~ W + A, data = dat_treat)
preds <- predict(pred_mod, dat_treat)
power_marginaleffect(
response = dat_treat$Y,
predictions = preds,
target_effect = 0.4,
exposure_prob = 1/2
)
## -----------------------------------------------------------------------------
vanc <- variance_ancova(Y ~ A + W, data = dat_treat)
vanc
## -----------------------------------------------------------------------------
power_gs(variance = vanc, n = 100, ate = 0.8)
power_nc(variance = vanc, n = 100, df = 97, ate = 0.8)
samplesize_gs(variance = vanc, ate = 0.8, power = 0.9)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.