Description Usage Arguments Value Author(s) References See Also Examples
Computes the cross-validated error of penalized PLS for different values of lambda and components, and returns the parameter values and coefficients for the optimal model.
1 | penalized.pls.cv(X, y, P, lambda, ncomp, k, kernel,scale)
|
X |
matrix of input data |
y |
vector of responses |
P |
Penalty matrix. For the default value |
lambda |
vector of candidate parameters lambda for the amount of penalization. Default value is 1 |
ncomp |
Number of penalized PLS components to be computed. Default value is min(nrow(X)-1,ncol(X)) |
k |
the number of splits in |
kernel |
Logical value. If |
scale |
logical value. If scale=TRUE, the X variables are standardized to have unit variance. Default value is FALSE |
error.cv |
matrix of cross-validated errors. The rows correspond to the values of lambda, the columns correspond to the number of components. |
lambda |
vector of candidate parameters lambda for the amount of penalization |
lambda.opt |
Optimal value of lambda |
index.lambda |
Index for the optimal value of lambda |
ncomp.opt |
Optimal number of penalized PLS components |
min.ppls |
Cross-validated error for the optimal penalized PLS solution |
intercept |
Intercept for the optimal model, computed on the whole data set |
coefficients |
Regression coefficients for the optimal model, computed on the whole data set |
coefficients.jackknife |
array of regression coefficients for each cross-validation run and each parameter setting. The dimension is |
Nicole Kraemer
N. Kraemer, A.-L. Boulsteix, and G. Tutz (2008). Penalized Partial Least Squares with Applications to B-Spline Transformations and Functional Data. Chemometrics and Intelligent Laboratory Systems 94, 60 - 69. http://dx.doi.org/10.1016/j.chemolab.2008.06.009
ppls.splines.cv
,penalized.pls
,new.penalized.pls
,jack.ppls
1 2 3 4 5 6 | # the penalty term in this example does not make much
# sense
X<-matrix(rnorm(20*100),ncol=20)
y<-rnorm(rnorm(100))
P<-Penalty.matrix(m=20)
pen.pls<-penalized.pls.cv(X,y,lambda=c(0,1,10),P=P,ncomp=10,kernel=FALSE)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.