Nothing
#' The average weighted estimator and the unknown weighted estimator of the PQL in #'Poisson-GLMS through damped Gauss-Newton
#' @param data is a design matrix with uniform distribution and the response vector
#' @param G is the number of subsets.
#' nk is the size of subsets.
#' n is the sample size.
#' p is the number of variables.
#' @return betaBA, betaBW, MSEA, MSEW
#' @export
#' @examples
#'p<- 5;G<- 20;n<- 1000;nk=200
#'X<- matrix(runif(n * p, 0, 0.5), ncol = p)
#'beta <- runif(p, 0, 1)
#'y<- rpois(n, exp(X%*% beta))
#'data=cbind(y,X)
#' pqlBpoisson2(data,G,nk)
pqlBpoisson2=function(data,G,nk){
betaA=pqlPoisson(data,G,nk)$betaA
gbetap= y%*%X-t(t(X)%*%exp(X%*%betaA))
gbetap#SQ
p=5
n= 1000
X<- matrix(runif(n * p, 0, 0.5), ncol = p)
beta <- runif(p, 0, 1)
y<- rpois(n, exp(X %*% beta))
hbetap=matrix(rep(0,p*p),ncol=p)
hbetap= t(X) %*%X
hbetap;hA=hbetap;gA=gbetap
betaBA=betaA+t(solve(hA)%*%t(gA))/G
betaW=pqlPoisson(data,G,nk)$betaW
gbetap= y%*%X- t(t(X)%*%exp(X%*%betaW))
hbetap= t(X) %*%X
hbetap;hw=hbetap;gw=gbetap
betaBW=betaW-t(solve(hw)%*%t(gw))/G
beta <- as.numeric(beta)
betaBA <- as.numeric(betaBA)
norm(as.matrix(beta-betaBA),"f");norm(as.matrix(beta-betaBW),"f")
return(list(betaBA=betaBA,betaBW=betaBW,MSEA=norm(as.matrix(beta-betaBA),"f"),
MSEW=norm(as.matrix(beta-betaBW),"f")))
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.