importance.pre | R Documentation |
importance.pre
calculates importances for rules, linear terms and input
variables in the prediction rule ensemble (pre), and creates a bar plot
of variable importances.
## S3 method for class 'pre'
importance(
x,
standardize = FALSE,
global = TRUE,
penalty.par.val = "lambda.1se",
gamma = NULL,
quantprobs = c(0.75, 1),
round = NA,
plot = TRUE,
ylab = "Importance",
main = "Variable importances",
abbreviate = 10L,
diag.xlab = TRUE,
diag.xlab.hor = 0,
diag.xlab.vert = 2,
cex.axis = 1,
legend = "topright",
...
)
x |
an object of class |
standardize |
logical. Should baselearner importances be standardized
with respect to the outcome variable? If |
global |
logical. Should global importances be calculated? If
|
penalty.par.val |
character or numeric. Value of the penalty parameter
|
gamma |
Mixing parameter for relaxed fits. See
|
quantprobs |
optional numeric vector of length two. Only used when
|
round |
integer. Number of decimal places to round numeric results to.
If |
plot |
logical. Should variable importances be plotted? |
ylab |
character string. Plotting label for y-axis. Only used when
|
main |
character string. Main title of the plot. Only used when
|
abbreviate |
integer or logical. Number of characters to abbreviate
x axis names to. If |
diag.xlab |
logical. Should variable names be printed diagonally (that
is, in a 45 degree angle)? Alternatively, variable names may be printed
vertically by specifying |
diag.xlab.hor |
numeric. Horizontal adjustment for lining up variable names with bars in the plot if variable names are printed diagonally. |
diag.xlab.vert |
positive integer. Vertical adjustment for position of variable names, if printed diagonally. Corresponds to the number of character spaces added after variable names. |
cex.axis |
numeric. The magnification to be used for axis annotation
relative to the current setting of |
legend |
logical or character. Should legend be plotted for multinomial
or multivariate responses and if so, where? Defaults to |
... |
further arguments to be passed to |
See also sections 6 and 7 of Friedman & Popecus (2008).
A list with two dataframes: $baseimps
, giving the importances
for baselearners in the ensemble, and $varimps
, giving the importances
for all predictor variables.
Fokkema, M. (2020). Fitting prediction rule ensembles with R package pre. Journal of Statistical Software, 92(12), 1-30. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.18637/jss.v092.i12")}
Fokkema, M. & Strobl, C. (2020). Fitting prediction rule ensembles to psychological research data: An introduction and tutorial. Psychological Methods 25(5), 636-652. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1037/met0000256")}, https://arxiv.org/abs/1907.05302
Friedman, J. H., & Popescu, B. E. (2008). Predictive learning via rule ensembles. The Annals of Applied Statistics, 2(3), 916-954 \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1214/07-AOAS148")}.
pre
set.seed(42)
airq.ens <- pre(Ozone ~ ., data = airquality[complete.cases(airquality),])
# calculate global importances:
importance(airq.ens)
# calculate local importances (default: over 25% highest predicted values):
importance(airq.ens, global = FALSE)
# calculate local importances (custom: over 25% lowest predicted values):
importance(airq.ens, global = FALSE, quantprobs = c(0, .25))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.