inst/doc/predRupdate.R

## ----include = FALSE----------------------------------------------------------
knitr::opts_chunk$set(
  collapse = TRUE,
  comment = "#>"
)

## ----setup, echo = FALSE------------------------------------------------------
library(predRupdate)

## ----echo = FALSE-------------------------------------------------------------
coefs_table <- as.data.frame(round(t(SYNPM$Existing_logistic_models[1,which(!is.na(SYNPM$Existing_logistic_models[1,]))]), 3))
names(coefs_table) <- c("Coefficient")
knitr::kable(coefs_table, caption = "Table of coefficients for the existing logistic regression prediction model")

## -----------------------------------------------------------------------------
# create a data.frame of the model coefficients, with columns being variables
coefs_table <- data.frame("Intercept" = -3.995, #the intercept needs to be named exactly as given here
                          "Age" = 0.012,
                          "SexM" = 0.267, 
                          "Smoking_Status" = 0.751,
                          "Diabetes" = 0.523,
                          "Creatinine" = 0.578)

#pass this into pred_input_info()
Existing_Logistic_Model <- pred_input_info(model_type = "logistic",
                                           model_info = coefs_table)
summary(Existing_Logistic_Model)

## -----------------------------------------------------------------------------
validation_results <- pred_validate(x = Existing_Logistic_Model,
                                    new_data = SYNPM$ValidationData,
                                    binary_outcome = "Y")
summary(validation_results) #use summary() to obtain a tidy output summary of the model performance

## ----fig.height=6, fig.width=10-----------------------------------------------
plot(validation_results)

## ----fig.height=6, fig.width=6------------------------------------------------
validation_results$flex_calibrationplot + 
  ggplot2::theme_classic() +
  ggplot2::xlim(c(0,0.5)) + ggplot2:::ylim(c(0,0.5))

## -----------------------------------------------------------------------------
validation_results <- pred_validate(x = Existing_Logistic_Model,
                                    new_data = SYNPM$ValidationData,
                                    binary_outcome = "Y",
                                    level = 0.90)
summary(validation_results) #use summary() to obtain a tidy output summary of the model performance

## ----echo = FALSE-------------------------------------------------------------
coefs_table <- as.data.frame(round(t(SYNPM$Existing_TTE_models[1,which(!is.na(SYNPM$Existing_TTE_models[1,]))]), 3))
names(coefs_table) <- c("Coefficient")
knitr::kable(coefs_table, caption = "Table of coefficients for the existing time-to-event regression prediction model")

## ----echo = FALSE-------------------------------------------------------------
BH_table <- SYNPM$TTE_mod1_baseline
knitr::kable(BH_table, caption = "Table of baseline cumulative hazard")

## -----------------------------------------------------------------------------
# create a data.frame of the model coefficients, with columns being variables
coefs_table <- data.frame("Age" = 0.007,
                          "SexM" = 0.225,
                          "Smoking_Status" = 0.685,
                          "Diabetes" = 0.425,
                          "Creatinine" = 0.587)

#pass this into pred_input_info()
Existing_TTE_Model <- pred_input_info(model_type = "survival",
                                      model_info = coefs_table,
                                      cum_hazard = BH_table) #where BH_table is the baseline hazard above

#now validate against the time-to-event outcomes in the new dataset:
validation_results <- pred_validate(x = Existing_TTE_Model,
                                    new_data = SYNPM$ValidationData,
                                    survival_time = "ETime",
                                    event_indicator = "Status",
                                    time_horizon = 5)
summary(validation_results)

## ----fig.height=6, fig.width=10-----------------------------------------------
plot(validation_results)

## ----eval=FALSE---------------------------------------------------------------
#  df <- SYNPM$ValidationData
#  
#  cox_mod <- survival::coxph(survival::Surv(ETime, Status) ~ Age + Creatinine,
#                             data = df)
#  coefs_table <- data.frame("Age" = coef(cox_mod)["Age"],
#                            "Creatinine" = coef(cox_mod)["Creatinine"])
#  
#  #example of using basehaz() for uncentered/values:
#  base_haz_zero <- survival::basehaz(cox_mod,
#                                     newdata = data.frame("Age" = 0,
#                                                          "Creatinine" = 0))
#  #or use centered=FALSE in survival::basehaz()
#  #base_haz_zero <- survival::basehaz(cox_mod, centered = FALSE)
#  
#  Existing_TTE_Model <- pred_input_info(model_type = "survival",
#                                        model_info = coefs_table,
#                                        cum_hazard = data.frame("time" = base_haz_zero$time,
#                                                                "hazard" = base_haz_zero$hazard))
#  
#  pred_validate(x = Existing_TTE_Model,
#                new_data = data.frame("Age" = df$Age,
#                                      "Creatinine" = df$Creatinine,
#                                      "ETime" = df$ETime,
#                                      "Status" = df$Status),
#                survival_time = "ETime",
#                event_indicator = "Status",
#                time_horizon = 5)
#  
#  
#  #Alternatively, the below code shows how to handle the scaled/centred baseline
#  # hazard, such that we need to also scale/centre the new_data:
#  base_haz_centred <- survival::basehaz(cox_mod)
#  Existing_TTE_Model <- pred_input_info(model_type = "survival",
#                                        model_info = coefs_table,
#                                        cum_hazard = data.frame("time" = base_haz_centred$time,
#                                                                "hazard" = base_haz_centred$hazard))
#  
#  pred_validate(x = Existing_TTE_Model,
#                new_data = data.frame("Age" = df$Age - mean(df$Age),
#                                      "Creatinine" = df$Creatinine - mean(df$Creatinine),
#                                      "ETime" = df$ETime,
#                                      "Status" = df$Status),
#                survival_time = "ETime",
#                event_indicator = "Status",
#                time_horizon = 5)
#  #failing to mean-center new_data passed into pred_validate() would give erroneous results.

## -----------------------------------------------------------------------------
# create a data.frame of the model coefficients, with columns being variables
coefs_table <- data.frame("Intercept" = -3.995, 
                          "Age" = 0.012,
                          "SexM" = 0.267, 
                          "Smoking_Status" = 0.751,
                          "Diabetes" = 0.523,
                          "Creatinine" = 0.578)

#pass this into pred_input_info()
Existing_Logistic_Model <- pred_input_info(model_type = "logistic",
                                           model_info = coefs_table)

#apply the pred_update function to update the model to the new dataset:
Updated_model <- pred_update(Existing_Logistic_Model,
                             update_type = "recalibration",
                             new_data = SYNPM$ValidationData,
                             binary_outcome = "Y")

summary(Updated_model)

## -----------------------------------------------------------------------------
summary(pred_validate(Updated_model, 
                      new_data = SYNPM$ValidationData, 
                      binary_outcome = "Y"))

## -----------------------------------------------------------------------------
coefs_table <- data.frame(rbind(c("Intercept" = -3.995,
                                  "Age" = 0.012,
                                  "SexM" = 0.267,
                                  "Smoking_Status" = 0.751,
                                  "Diabetes" = 0.523,
                                  "Creatinine" = 0.578),
                                c("Intercept" = -2.282,
                                  "Age" = NA,
                                  "SexM" = 0.223,
                                  "Smoking_Status" = 0.528,
                                  "Diabetes" = 0.200,
                                  "Creatinine" = 0.434),
                                c("Intercept" = -3.013,
                                  "Age" = NA,
                                  "SexM" = NA,
                                  "Smoking_Status" = 0.565,
                                  "Diabetes" = -0.122,
                                  "Creatinine" = 0.731)))
multiple_mods <- pred_input_info(model_type = "logistic",
                                 model_info = coefs_table)
summary(multiple_mods)

## -----------------------------------------------------------------------------
SR <- pred_stacked_regression(x = multiple_mods,
                              new_data = SYNPM$ValidationData,
                              binary_outcome = "Y")
summary(SR)

## -----------------------------------------------------------------------------
summary(pred_validate(SR, 
              new_data = SYNPM$ValidationData, 
              binary_outcome = "Y"))

## -----------------------------------------------------------------------------
# create a data.frame of the model coefficients, with columns being variables
coefs_table <- data.frame("Intercept" = -3.995, 
                          "Smoking" = 0.751)

#pass this into pred_input_info()
Existing_Logistic_Model <- pred_input_info(model_type = "logistic",
                                           model_info = coefs_table)
try(pred_predict(Existing_Logistic_Model, 
                 new_data = SYNPM$ValidationData))

names(SYNPM$ValidationData)

## -----------------------------------------------------------------------------
new_df <- data.frame("Sex" = as.factor(c("M", "F", "M", "M", "F", "F", "M")),
                     "Smoking_Status" = c(1, 0, 0, 1, 1, 0, 1))

## -----------------------------------------------------------------------------
coefs_table <- data.frame("Intercept" = -3.4,
                          "Sex_M" = 0.306,
                          "Smoking_Status" = 0.628)
existing_Logistic_Model <- pred_input_info(model_type = "logistic",
                                           model_info = coefs_table)

#if we try to use functions within predRupdate using new_df it will give an error as Sex is a factor variable:
try(pred_predict(existing_Logistic_Model, 
                 new_data = new_df))

#we must first turn into dummy variables:
new_df_indicatorvars <- dummy_vars(new_df)
head(new_df_indicatorvars)

#and then pass to functions within predRupdate; e.g.:
pred_predict(existing_Logistic_Model, 
             new_data = new_df_indicatorvars)

Try the predRupdate package in your browser

Any scripts or data that you put into this service are public.

predRupdate documentation built on Sept. 11, 2024, 5:34 p.m.