Nothing
## ---- include = FALSE---------------------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>",
fig.width = 7,
fig.height = 5
)
## ----setup--------------------------------------------------------------------
library(predictNMB)
library(parallel)
set.seed(42)
## -----------------------------------------------------------------------------
nmb_sampler <- get_nmb_sampler(
wtp = 28033,
qalys_lost = function() rnorm(n = 1, mean = 0.0036, sd = 0.0005),
high_risk_group_treatment_cost = function() rnorm(n = 1, mean = 20, sd = 3),
high_risk_group_treatment_effect = function() rbeta(n = 1, shape1 = 40, shape2 = 60)
)
rbind(nmb_sampler(), nmb_sampler(), nmb_sampler())
## -----------------------------------------------------------------------------
nmb_sampler_training <- get_nmb_sampler(
wtp = 28033,
qalys_lost = function() rnorm(n = 1, mean = 0.0036, sd = 0.0007),
high_risk_group_treatment_cost = rnorm(n = 1, mean = 20, sd = 5),
high_risk_group_treatment_effect = function() rbeta(n = 1, shape1 = 40, shape2 = 60),
use_expected_values = TRUE
)
rbind(nmb_sampler_training(), nmb_sampler_training(), nmb_sampler_training())
## ---- echo=FALSE--------------------------------------------------------------
nmb_simulation <- readRDS("fixtures/predictNMB-nmb_simulation.rds")
## ---- eval=FALSE--------------------------------------------------------------
# nmb_simulation <- do_nmb_sim(
# sample_size = 1000,
# n_sims = 500,
# n_valid = 10000,
# sim_auc = 0.7,
# event_rate = 0.1,
# fx_nmb_training = nmb_sampler_training,
# fx_nmb_evaluation = nmb_sampler,
# show_progress = TRUE
# )
## -----------------------------------------------------------------------------
nmb_simulation
## -----------------------------------------------------------------------------
hist(
nmb_simulation$df_result$all,
main = "Simulation results - treat all",
xlab = "Net monetary benefit (NMB)"
)
summary(nmb_simulation$df_result$all)
## -----------------------------------------------------------------------------
autoplot(nmb_simulation) + theme_sim()
## -----------------------------------------------------------------------------
get_inbuilt_cutpoint_methods()
autoplot(nmb_simulation, methods_order = c("all", "none", "youden")) + theme_sim()
## -----------------------------------------------------------------------------
autoplot(nmb_simulation, what = "cutpoints") + theme_sim()
## -----------------------------------------------------------------------------
autoplot(nmb_simulation, what = "inb", inb_ref_col = "all") + theme_sim()
## -----------------------------------------------------------------------------
head(nmb_simulation$df_result)
## -----------------------------------------------------------------------------
head(nmb_simulation$df_thresholds)
## -----------------------------------------------------------------------------
ce_plot(nmb_simulation, ref_col = "all", methods_order = c("all", "none", "youden"))
## ---- echo=FALSE--------------------------------------------------------------
sim_screen_obj <- readRDS("fixtures/predictNMB-sim_screen_obj.rds")
## ---- eval=FALSE--------------------------------------------------------------
# cl <- makeCluster(2)
# sim_screen_obj <- screen_simulation_inputs(
# n_sims = 500,
# n_valid = 10000,
# sim_auc = seq(0.7, 0.95, 0.05),
# event_rate = c(0.1, 0.2),
# fx_nmb_training = nmb_sampler_training,
# fx_nmb_evaluation = nmb_sampler,
# cutpoint_methods = c("all", "none", "youden", "value_optimising"),
# cl = cl
# )
# stopCluster(cl)
## -----------------------------------------------------------------------------
autoplot(sim_screen_obj, x_axis_var = "sim_auc", constants = c(event_rate = 0.2))
autoplot(sim_screen_obj, x_axis_var = "sim_auc", constants = c(event_rate = 0.1))
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.