Nothing
test_that("random values without conservation benefits, threat amount equal to 1 and no locked actions", {
# simulate data
bound <- expand.grid(seq_len(10), seq_len(10))
colnames(bound) <- c("id1", "id2")
pu_sim <- data.frame(
id = seq_len(10),
monitoring_cost = c(0.1, sample(1:10, 9, replace = TRUE)),
status = rep(0, 10))
features_sim <- data.frame(
id = seq_len(2),
target_recovery = sample(1:10, 2, replace = TRUE),
name = letters[seq_len(2)])
dist_features_sim <- data.frame(
pu = rep(seq_len(10), 2),
feature = c(rep(1, 10), rep(2, 10)),
amount = sample(1:3, 20, replace = TRUE))
threats_sim <- data.frame(
id = seq_len(1),
blm_actions = sample(1:10, 1, replace = TRUE),
name = letters[seq_len(1)])
dist_threats_sim <- data.frame(
pu = seq_len(10),
threat = rep(1, 10),
amount = rep(1, 10),
action_cost = sample(1:10,10, replace = TRUE),
status = rep(0, 10))
boundary_sim <- data.frame(
bound,
boundary = sample(1:10,nrow(bound), replace = TRUE))
d <- suppressWarnings(inputData(pu = pu_sim,
features = features_sim,
dist_features = dist_features_sim,
threats = threats_sim,
dist_threats = dist_threats_sim,
boundary = boundary_sim))
f <- getPotentialBenefit(d)
# tests
expect_s3_class(d, "Data")
expect_equal(nrow(f), d$getFeatureAmount())
expect_equal(f$dist[1], sum(d$data$dist_features$feature == 1, na.rm = TRUE))
expect_equal(f$dist[2], sum(d$data$dist_features$feature == 2, na.rm = TRUE))
expect_equal(f$dist, f$dist_threatened)
expect_equal(f$maximum.recovery.benefit, f$maximum.benefit)
})
test_that("random values with conservation benefits, threat amount equal to 1 and no locked actions", {
# simulate data
bound <- expand.grid(seq_len(10), seq_len(10))
colnames(bound) <- c("id1", "id2")
pu_sim <- data.frame(
id = seq_len(10),
monitoring_cost = c(0.1, sample(1:10, 9, replace = TRUE)),
status = rep(0, 10))
features_sim <- data.frame(
id = seq_len(2),
target_recovery = sample(1:10, 2, replace = TRUE),
name = letters[seq_len(2)])
dist_features_sim <- data.frame(
pu = rep(seq_len(10), 2),
feature = c(rep(1, 10), rep(2, 10)),
amount = sample(1:3, 20, replace = TRUE))
threats_sim <- data.frame(
id = seq_len(1),
blm_actions = sample(1:10, 1),
name = letters[seq_len(1)])
dist_threats_sim <- data.frame(
pu = seq_len(10),
threat = rep(1, 10),
amount = c(0, rep(1, 9)),
action_cost = sample(1:10,10, replace = TRUE),
status = rep(0, 10))
boundary_sim <- data.frame(
bound,
boundary = sample(1:10,nrow(bound), replace = TRUE))
d <- suppressWarnings(inputData(pu = pu_sim,
features = features_sim,
dist_features = dist_features_sim,
threats = threats_sim,
dist_threats = dist_threats_sim,
boundary = boundary_sim))
f <- getPotentialBenefit(d)
# tests
expect_s3_class(d, "Data")
expect_equal(nrow(f), d$getFeatureAmount())
expect_equal(f$dist[1], sum(d$data$dist_features$feature == 1, na.rm = TRUE))
expect_equal(f$dist[2], sum(d$data$dist_features$feature == 2, na.rm = TRUE))
expect_true(all(f$dist >= f$dist_threatened))
expect_true(all(f$maximum.benefit >= f$maximum.recovery.benefit))
expect_true(any(f$maximum.conservation.benefit > 0))
})
test_that("compare benefits with threat amount not equal to 1 and no locked actions", {
# simulate data
bound <- expand.grid(seq_len(10), seq_len(10))
colnames(bound) <- c("id1", "id2")
pu_sim <- data.frame(
id = seq_len(10),
monitoring_cost = c(0.1, sample(1:10, 9, replace = TRUE)),
status = rep(0, 10))
features_sim <- data.frame(
id = seq_len(2),
target_recovery = sample(1:10, 2, replace = TRUE),
name = letters[seq_len(2)])
dist_features_sim <- data.frame(
pu = rep(seq_len(10), 2),
feature = c(rep(1, 10), rep(2, 10)),
amount = sample(1:3, 20, replace = TRUE))
threats_sim <- data.frame(
id = seq_len(1),
blm_actions = sample(1:10, 1, replace = TRUE),
name = letters[seq_len(1)])
dist_threats_sim <- data.frame(
pu = seq_len(10),
threat = rep(1, 10),
amount = c(0, rep(1, 9)),
action_cost = sample(1:10,10, replace = TRUE),
status = rep(0, 10))
boundary_sim <- data.frame(
bound,
boundary = sample(1:10,nrow(bound), replace = TRUE))
dist_threats_sim2 <- data.frame(
pu = seq_len(10),
threat = rep(1, 10),
amount = c(0,sample(1:20, 9)),
action_cost = sample(1:10,10, replace = TRUE),
status = 0)
d1 <- suppressWarnings(inputData(pu = pu_sim,
features = features_sim,
dist_features = dist_features_sim,
threats = threats_sim,
dist_threats = dist_threats_sim,
boundary = boundary_sim))
d2 <- suppressWarnings(inputData(pu = pu_sim,
features = features_sim,
dist_features = dist_features_sim,
threats = threats_sim,
dist_threats = dist_threats_sim2,
boundary = boundary_sim))
f1 <- getPotentialBenefit(d1)
f2 <- getPotentialBenefit(d2)
# tests
expect_equal(f1$feature, f2$feature)
expect_equal(f1$dist, f2$dist)
expect_equal(f1$dist_threatened, f2$dist_threatened)
expect_equal(f1$maximum.conservation.benefit, f2$maximum.conservation.benefit)
expect_true(all(f1$maximum.recovery.benefit >= f2$maximum.recovery.benefit))
expect_true(all(f1$maximum.benefit >= f2$maximum.benefit))
})
test_that("compare benefits with threat amount equal to 1 and locked actions", {
# simulate data
status_pu <- sample(0:3, 10, replace = TRUE)
status_pu <- ifelse(status_pu == 1, 0, status_pu)
status_action <- sample(0:3, 10, replace = TRUE)
status_action <- ifelse(status_action == 1, 0, status_action)
bound <- expand.grid(seq_len(10), seq_len(10))
colnames(bound) <- c("id1", "id2")
pu_sim <- data.frame(
id = seq_len(10),
monitoring_cost = c(0.1, sample(1:10, 9, replace = TRUE)),
status = ifelse(status_pu == 1, 0 , status_pu))
features_sim <- data.frame(
id = seq_len(2),
target_recovery = sample(1:10, 2, replace = TRUE),
name = letters[seq_len(2)])
dist_features_sim <- data.frame(
pu = rep(seq_len(10), 2),
feature = c(rep(1, 10), rep(2, 10)),
amount = sample(1:3, 20, replace = TRUE))
threats_sim <- data.frame(
id = seq_len(1),
blm_actions = sample(1:10, 1, replace = TRUE),
name = letters[seq_len(1)])
dist_threats_sim <- data.frame(
pu = seq_len(10),
threat = rep(1, 10),
amount = rep(1, 10),
action_cost = sample(1:10,10, replace = TRUE),
status = rep(0, 10))
boundary_sim <- data.frame(
bound,
boundary = sample(1:10,nrow(bound), replace = TRUE))
pu_sim2 <- data.frame(
id = seq_len(10),
monitoring_cost = c(0.1, sample(1:10, 9, replace = TRUE)),
status = ifelse(status_pu == 1, 0 , status_pu))
dist_threats_sim2 <- data.frame(
pu = seq_len(10),
threat = rep(1, 10),
amount = rep(1, 10),
action_cost = sample(1:10,10, replace = TRUE),
status = ifelse(status_action == 1, 0 , status_action))
d1 <- suppressWarnings(inputData(pu = pu_sim,
features = features_sim,
dist_features = dist_features_sim,
threats = threats_sim,
dist_threats = dist_threats_sim,
boundary = boundary_sim))
d2 <- suppressWarnings(inputData(pu = pu_sim2,
features = features_sim,
dist_features = dist_features_sim,
threats = threats_sim,
dist_threats = dist_threats_sim2,
boundary = boundary_sim))
f1 <- getPotentialBenefit(d1)
f2 <- getPotentialBenefit(d2)
# tests
expect_equal(f1$feature, f2$feature)
expect_equal(f1$dist, f2$dist)
expect_true(all(f1$dist_threatened >= f2$dist_threatened))
expect_true(all(f1$maximum.recovery.benefit >= f2$maximum.recovery.benefit))
expect_true(all(f1$maximum.benefit >= f2$maximum.benefit))
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.