R/greyscale.R

Defines functions grayscale_channel grayscale_decomp grayscale_luma grayscale_averaging clr_greyscale clr_grayscale

Documented in clr_grayscale clr_greyscale

#' Transform colors to greyscale
#'
#' This function has a selection of different methods to turn colors into
#' grayscale.
#'
#' @inheritParams color
#' @param method character string specifying the grayscaling method. Can be one
#' of "luma", "averaging", "min_decomp",  "max_decomp", "red_channel",
#' "green_channel" and "blue_channel". Defaults to "luma".
#'
#' @details if method = "averaging" then the red, green and blue have been
#' averaged together to create the grey value. This method does a poor job of
#' representing the way the  human eye sees color.
#' If method = "luma" (the default) then then a weighted average is used to
#' calculate the grayscale values. The BT. 709 method from the ITU
#' Radiocommunication Sector have determined the weights.
#' It method = "min_decomp" or method = "max_decomp", then a decomposition
#' method is used where the minimum or maximum color value have been selected
#' for the color value. So the color rgb(60, 120, 40) would have the min_decomp
#' value of 40 and max_decomp value of 120.
#' If method is "red_channel", "green_channel" or "blue_channel", then the
#' corresponding color channel been selected for the values of grayscale.
#'
#' @source \url{https://tannerhelland.com/3643/grayscale-image-algorithm-vb6/}
#' @source \url{https://en.wikipedia.org/wiki/Luma}
#'
#' @rdname clr_grayscale
#'
#' @return a colors object of same length as col.
#' @export
#'
#' @examples
#'
#' plot(clr_grayscale(rainbow(10)))
#'
#' plot(clr_grayscale(terrain.colors(10)))
#'
#' viridis_colors <- c(
#'   "#4B0055FF", "#422C70FF", "#185086FF", "#007094FF",
#'   "#008E98FF", "#00A890FF", "#00BE7DFF", "#6CD05EFF",
#'   "#BBDD38FF", "#FDE333FF"
#' )
#'
#' plot(clr_grayscale(viridis_colors, method = "luma"))
#' plot(clr_grayscale(viridis_colors, method = "averaging"))
#' plot(clr_grayscale(viridis_colors, method = "min_decomp"))
#' plot(clr_grayscale(viridis_colors, method = "max_decomp"))
#' plot(clr_grayscale(viridis_colors, method = "red_channel"))
#' plot(clr_grayscale(viridis_colors, method = "green_channel"))
#' plot(clr_grayscale(viridis_colors, method = "blue_channel"))
clr_grayscale <- function(col, method = c(
                            "luma", "averaging", "min_decomp",
                            "max_decomp", "red_channel",
                            "green_channel", "blue_channel"
                          )) {
  col <- color(col)

  method <- match.arg(method)
  colors <- switch(method,
    luma = grayscale_luma(col),
    averaging = grayscale_averaging(col),
    min_decomp = grayscale_decomp(col, min),
    max_decomp = grayscale_decomp(col, max),
    red_channel = grayscale_channel(col, "red"),
    green_channel = grayscale_channel(col, "green"),
    blue_channel = grayscale_channel(col, "blue"),
  )

  color(colors)
}

#' @rdname clr_grayscale
#' @export
clr_greyscale <- function(col, method = c(
                            "luma", "averaging", "min_decomp",
                            "max_decomp", "red_channel",
                            "green_channel", "blue_channel"
                          )) {
  col <- color(col)

  method <- match.arg(method)

  clr_grayscale(col, method)
}

grayscale_averaging <- function(col) {
  value <- matrix(c(1 / 3, 1 / 3, 1 / 3), nrow = 1) %*% col2rgb(col) / 256
  rgb(value, value, value)
}

grayscale_luma <- function(col) {
  value <- matrix(c(0.2126, 0.7152, 0.0722), nrow = 1) %*% col2rgb(col) / 256
  rgb(value, value, value)
}

grayscale_decomp <- function(col, fun) {
  value <- apply(col2rgb(col) / 256, 2, fun)
  rgb(value, value, value)
}

grayscale_channel <- function(col, channel) {
  value <- (col2rgb(col) / 256)[channel, ]
  rgb(value, value, value)
}

Try the prismatic package in your browser

Any scripts or data that you put into this service are public.

prismatic documentation built on May 29, 2024, 6:04 a.m.