Nothing
#------------------------------- Methods ---------------------------------------
#' Uses a logistic regression model to calibrate probabilities
#' @param .data An ungrouped `data.frame` object, or `tune_results` object,
#' that contains predictions and probability columns.
#' @param truth The column identifier for the true class results
#' (that is a factor). This should be an unquoted column name.
#' @param estimate A vector of column identifiers, or one of `dplyr` selector
#' functions to choose which variables contains the class probabilities. It
#' defaults to the prefix used by tidymodels (`.pred_`). The order of the
#' identifiers will be considered the same as the order of the levels of the
#' `truth` variable.
#' @param parameters (Optional) An optional tibble of tuning parameter values
#' that can be used to filter the predicted values before processing. Applies
#' only to `tune_results` objects.
#' @param .by The column identifier for the grouping variable. This should be
#' a single unquoted column name that selects a qualitative variable for
#' grouping. Default to `NULL`. When `.by = NULL` no grouping will take place.
#' @param ... Additional arguments passed to the models or routines used to
#' calculate the new probabilities.
#' @param smooth Applies to the logistic models. It switches between logistic
#' spline when `TRUE`, and simple logistic regression when `FALSE`.
#' @examples
#' # It will automatically identify the probability columns
#' # if passed a model fitted with tidymodels
#' cal_estimate_logistic(segment_logistic, Class)
#'
#' # Specify the variable names in a vector of unquoted names
#' cal_estimate_logistic(segment_logistic, Class, c(.pred_poor, .pred_good))
#'
#' # dplyr selector functions are also supported
#' cal_estimate_logistic(segment_logistic, Class, dplyr::starts_with(".pred_"))
#' @details
#' This function uses existing modeling functions from other packages to create
#' the calibration:
#' - [stats::glm()] is used when `smooth` is set to `FALSE`
#' - [mgcv::gam()] is used when `smooth` is set to `TRUE`
#'
#' ## Multiclass Extension
#'
#' This method has _not_ been extended to multiclass outcomes. However, the
#' natural multiclass extension is [cal_estimate_multinomial()].
#' @seealso
#' \url{https://www.tidymodels.org/learn/models/calibration/},
#' [cal_validate_logistic()]
#' @export
cal_estimate_logistic <- function(
.data,
truth = NULL,
estimate = dplyr::starts_with(".pred_"),
smooth = TRUE,
parameters = NULL,
...
) {
UseMethod("cal_estimate_logistic")
}
#' @export
#' @rdname cal_estimate_logistic
cal_estimate_logistic.data.frame <- function(
.data,
truth = NULL,
estimate = dplyr::starts_with(".pred_"),
smooth = TRUE,
parameters = NULL,
...,
.by = NULL
) {
stop_null_parameters(parameters)
info <- get_prediction_data(
.data,
truth = {{ truth }},
estimate = {{ estimate }},
.by = {{ .by }}
)
model <- logistic_fit_over_groups(info, smooth, ...)
if (smooth) {
method <- "Generalized additive model calibration"
additional_class <- "cal_estimate_logistic_spline"
} else {
method <- "Logistic regression calibration"
additional_class <- "cal_estimate_logistic"
}
as_cal_object(
estimate = model,
levels = info$map,
truth = info$truth,
method = method,
rows = nrow(info$predictions),
additional_classes = additional_class,
source_class = cal_class_name(.data),
type = "binary"
)
}
#' @export
#' @rdname cal_estimate_logistic
cal_estimate_logistic.tune_results <- function(
.data,
truth = NULL,
estimate = dplyr::starts_with(".pred_"),
smooth = TRUE,
parameters = NULL,
...
) {
info <- get_tune_data(.data, parameters)
model <- logistic_fit_over_groups(info, smooth, ...)
if (smooth) {
method <- "Generalized additive model calibration"
additional_class <- "cal_estimate_logistic_spline"
} else {
method <- "Logistic regression calibration"
additional_class <- "cal_estimate_logistic"
}
as_cal_object(
estimate = model,
levels = info$map,
truth = info$truth,
method = method,
rows = nrow(info$predictions),
additional_classes = additional_class,
source_class = cal_class_name(.data),
type = "binary"
)
}
#' @export
#' @rdname cal_estimate_logistic
cal_estimate_logistic.grouped_df <- function(
.data,
truth = NULL,
estimate = NULL,
smooth = TRUE,
parameters = NULL,
...
) {
abort_if_grouped_df()
}
#' @rdname required_pkgs.cal_object
#' @keywords internal
#' @export
required_pkgs.cal_estimate_logistic_spline <- function(x, ...) {
check_req_pkgs(x)
}
#' @rdname required_pkgs.cal_object
#' @keywords internal
#' @export
required_pkgs.cal_estimate_logistic <- function(x, ...) {
c("probably")
}
#--------------------------- Implementation ------------------------------------
fit_logistic_model <- function(.data, smooth, estimate, outcome, ...) {
smooth <- turn_off_smooth_if_too_few_unique(.data, estimate, smooth)
f <- f_from_str(outcome, estimate[-length(estimate)], smooth)
if (smooth) {
# TODO check for failures
model <- mgcv::gam(f, data = .data, family = "binomial", ...)
} else {
# TODO check for failures
model <- glm(f, data = .data, family = "binomial", ...)
}
model <- butcher::butcher(model)
model
}
logistic_fit_over_groups <- function(info, smooth = TRUE, ...) {
if (length(info$levels) > 2) {
cli::cli_abort(
"The {.arg truth} column has {length(info$levels)} levels ({.val {info$levels}}),
but only two-class factors are allowed for this calibration method."
)
}
grp_df <- make_group_df(info$predictions, group = info$group)
nst_df <- vctrs::vec_split(x = info$predictions, by = grp_df)
fltrs <- make_cal_filters(nst_df$key)
fits <-
lapply(
nst_df$val,
fit_logistic_model,
smooth = smooth,
estimate = info$estimate,
info$truth,
...
)
purrr::map2(fits, fltrs, ~ list(filter = .y, estimate = .x))
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.