Description Usage Arguments Value References Examples
This function calculates the Hettmansperger-Norton trend test using pseudo-ranks under the null hypothesis H0F: F_1 = ... F_k.
| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 | hettmansperger_norton_test(x, ...)
## S3 method for class 'numeric'
hettmansperger_norton_test(
  x,
  y,
  na.rm = FALSE,
  alternative = c("decreasing", "increasing", "custom"),
  trend = NULL,
  pseudoranks = TRUE,
  ...
)
## S3 method for class 'formula'
hettmansperger_norton_test(
  formula,
  data,
  na.rm = FALSE,
  alternative = c("decreasing", "increasing", "custom"),
  trend = NULL,
  pseudoranks = TRUE,
  ...
)
 | 
| x | vector containing the observations | 
| ... | further arguments are ignored | 
| y | vector specifiying the group to which the observations from the x vector belong to | 
| na.rm | a logical value indicating if NA values should be removed | 
| alternative | either decreasing (trend k, k-1, ..., 1) or increasing (1, 2, ..., k) or custom (then argument trend must be specified) | 
| trend | custom numeric vector indicating the trend for the custom alternative, only used if alternative = "custom" | 
| pseudoranks | logical value indicating if pseudo-ranks or ranks should be used | 
| formula | formula object | 
| data | data.frame containing the variables in the formula (observations and group) | 
Returns an object.
Brunner, E., Bathke, A.C., and Konietschke, F. (2018a). Rank- and Pseudo-Rank Procedures for Independent Observations in Factorial Designs - Using R and SAS. Springer Series in Statistics, Springer, Heidelberg. ISBN: 978-3-030-02912-8.
Happ M, Zimmermann G, Brunner E, Bathke AC (2020). Pseudo-Ranks: How to Calculate Them Efficiently in R. Journal of Statistical Software, Code Snippets, *95*(1), 1-22. doi: 10.18637/jss.v095.c01 (URL:https://doi.org/10.18637/jss.v095.c01).
Hettmansperger, T. P., & Norton, R. M. (1987). Tests for patterned alternatives in k-sample problems. Journal of the American Statistical Association, 82(397), 292-299
| 1 2 3 4 5 6 7 8 9 | # create some data, please note that the group factor needs to be ordered
df <- data.frame(data = c(rnorm(40, 3, 1), rnorm(40, 2, 1), rnorm(20, 1, 1)),
  group = c(rep(1,40),rep(2,40),rep(3,20)))
df$group <- factor(df$group, ordered = TRUE)
# you can either test for a decreasing, increasing or custom trend
hettmansperger_norton_test(df$data, df$group, alternative="decreasing")
hettmansperger_norton_test(df$data, df$group, alternative="increasing")
hettmansperger_norton_test(df$data, df$group, alternative="custom", trend = c(1, 3, 2))
 | 
Hettmansperger-Norton Trend Test
 
Alternative:  decreasing 
Test Statistic:  6.994803 
Distribution of Statistic:  Standard-Normal 
unweighted relative Effects / Pseudo-ranks:  TRUE
p-Value:  1.32816e-12 
Hettmansperger-Norton Trend Test
 
Alternative:  increasing 
Test Statistic:  -6.994803 
Distribution of Statistic:  Standard-Normal 
unweighted relative Effects / Pseudo-ranks:  TRUE
p-Value:  1 
Hettmansperger-Norton Trend Test
 
Alternative:  custom 
Trend:  1 3 2 
Test Statistic:  -3.786608 
Distribution of Statistic:  Standard-Normal 
unweighted relative Effects / Pseudo-ranks:  TRUE
p-Value:  0.9999236 
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.