Nothing
## The psre package must be installed first.
## You can do this with the following code
# install.packages("remotes")
# remotes::install_github('davidaarmstrong/psre')
## load packages
library(tidyverse)
library(psre)
library(rio)
library(ggrepel)
## load data from psre package
data(gss)
## decrease the variance of sei01, make sex a factor,
## and recode values of education less than 6 to 6.
## select only the required variables, then listwise
## delete.
gss <- gss %>%
mutate(sei01 = sei10/100,
sex = factorize(sex),
educ = case_when(
educ < 6 ~ 6,
TRUE ~ educ)) %>%
dplyr::select(childs, age, sei01, sex, educ) %>%
na.omit()
## estimate a poisson glm
moda <- glm(childs ~ sei01 + sex + educ + age,
data=gss, family=poisson)
## use the first observation from the gss data
## to make predictions. we are going to hold
## all other variables constant at the values
## of the first observation. Then we will change
## the values of age by five units - 2.5 less
## than the age for the first observation and
## 2.5 more than age for the first observation.
fake <- gss[c(1,1),]
## change age by 5 years for the two observations
fake$age <- fake$age + c(-2.5, 2.5)
## generate predictions for the two observations
fit <- predict(moda, newdata= fake, type="response")
## make the data that will be used in the plot.
plot_pois <- tibble(
x = rep(fit, each=9),
person = factor(rep(c("M (mu = 1.13)", "F (mu = 1.85)"), each=9),
levels=c("M (mu = 1.13)", "F (mu = 1.85)")),
vals = rep(0:8, 2),
## here we use the poisson pmf to get the
## predicted count probabilities.
pois = dpois(0:8, x)
)
## A. Poisson Probabilities
ggplot(plot_pois, aes(x=vals, y=pois , fill=person)) +
geom_bar(position="dodge", stat="identity") +
theme_classic() +
scale_fill_manual(values=c("black", "gray50")) +
labs(x="Number of Childern", y="Poisson Probability",
fill="Respondent")+
theme(legend.position = c(.85, .85))
# ggssave("output/f10_1a.png", height=4.5, width=4.5, units="in", dpi=300)
## get coefficients from the model
b <- coef(moda)
## values of age used to make the lines
age <- 18:89
## linear predictor for all values of age
## between 18 and 89 holding everything else
## constant at central values.
eta_am <- b[1] + b[2]*age + b[3]* .26 + b[4]*0 + b[5]*12
eta_af <- b[1] + b[2]*age + b[3]* .26 + b[4]*1 + b[5]*12
## linear predictor for hypothetical cases
## at 20 and 45
eta_m <- b[1] + b[2]*20 + b[3]* .26 + b[4]*0 + b[5]*12
eta_f <- b[1] + b[2]*45 + b[3]* .26 + b[4]*1 + b[5]*12
## marginal effect for the poisson model
## is exp(eta)*b
## slope of line tangent to the curve for men
slope_m <- exp(eta_m)*coef(moda)[2]
## intercept of the line tangent to the curve
## for men
int_m <- exp(eta_m)-slope_m*20
## slope of the line tangent to the curve for
## women
slope_f <- exp(eta_f)*coef(moda)[2]
## intercept of the line tangent to the curve
## for women
int_f <- exp(eta_f)-slope_f*45
## make hypothetical data for men that has
## all ages between 18 and 89 and the
## predicted mu
plot_m <- tibble(
age = age,
eta = eta_am,
sex = factor(1, levels=1:2, labels=c("M", "F")))
## make hypothetical data for women that has
## all ages between 18 and 89 and the
## predicted mu
plot_f <- tibble(
age = age,
eta = eta_af,
sex = factor(2, levels=1:2, labels=c("M", "F")))
## put the data for men and women together.
plot_b <- bind_rows(
plot_m, plot_f)
## make a character that will serve as the label
## {M, F} where the age is at its maximum
plot_b <- plot_b %>%
mutate(lab = case_when(age == max(age) ~ as.character(sex), TRUE~NA_character_))
## B. Poisson Marginal Effect
ggplot(plot_b, aes(x=age, y=exp(eta), group=sex)) +
geom_line() +
geom_text_repel(aes(label = lab), hjust=1, vjust=.5, position=position_nudge(x=c(0,0))) +
geom_point(x=20, y=exp(eta_m)) +
geom_point(x=45, y=exp(eta_f)) +
geom_abline(slope=slope_m, intercept = int_m, linetype=2) +
geom_abline(slope=slope_f, intercept = int_f, linetype=3) +
theme_classic() +
labs(x="Age", y="E(y|b,X)")
# ggssave("output/f10_1b.png", height=4.5, width = 4.5, units="in", dpi=300)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.