estimate_var_artifacts | R Documentation |
Taylor series approximations to estimate the variances of artifacts that have been estimated from other artifacts.
These functions are implemented internally in the create_ad
function and related functions, but are useful as general tools for manipulating artifact distributions.
Available functions include:
estimate_var_qxi
: Estimate the variance of a qxi distribution from a qxa distribution and a distribution of u ratios.
estimate_var_rxxi
: Estimate the variance of an rxxi distribution from an rxxa distribution and a distribution of u ratios.
estimate_var_qxa
: Estimate the variance of a qxa distribution from a qxi distribution and a distribution of u ratios.
estimate_var_rxxa
: Estimate the variance of an rxxa distribution from an rxxi distribution and a distribution of u ratios.
estimate_var_ut
: Estimate the variance of a true-score u ratio distribution from an observed-score u ratio distribution and a reliability distribution.
estimate_var_ux
: Estimate the variance of an observed-score u ratio distribution from a true-score u ratio distribution and a reliability distribution.
estimate_var_qyi
: Estimate the variance of a qyi distribution from the following distributions: qya, rxyi, and ux.
estimate_var_ryyi
: Estimate the variance of an ryyi distribution from the following distributions: ryya, rxyi, and ux.
estimate_var_qya
: Estimate the variance of a qya distribution from the following distributions: qyi, rxyi, and ux.
estimate_var_ryya
: Estimate the variance of an ryya distribution from the following distributions: ryyi, rxyi, and ux.
estimate_var_qxi(
qxa,
var_qxa = 0,
ux,
var_ux = 0,
cor_qxa_ux = 0,
ux_observed = TRUE,
indirect_rr = TRUE,
qxa_type = "alpha"
)
estimate_var_qxa(
qxi,
var_qxi = 0,
ux,
var_ux = 0,
cor_qxi_ux = 0,
ux_observed = TRUE,
indirect_rr = TRUE,
qxi_type = "alpha"
)
estimate_var_rxxi(
rxxa,
var_rxxa = 0,
ux,
var_ux = 0,
cor_rxxa_ux = 0,
ux_observed = TRUE,
indirect_rr = TRUE,
rxxa_type = "alpha"
)
estimate_var_rxxa(
rxxi,
var_rxxi = 0,
ux,
var_ux = 0,
cor_rxxi_ux = 0,
ux_observed = TRUE,
indirect_rr = TRUE,
rxxi_type = "alpha"
)
estimate_var_ut(
rxx,
var_rxx = 0,
ux,
var_ux = 0,
cor_rxx_ux = 0,
rxx_restricted = TRUE,
rxx_as_qx = FALSE
)
estimate_var_ux(
rxx,
var_rxx = 0,
ut,
var_ut = 0,
cor_rxx_ut = 0,
rxx_restricted = TRUE,
rxx_as_qx = FALSE
)
estimate_var_ryya(
ryyi,
var_ryyi = 0,
rxyi,
var_rxyi = 0,
ux,
var_ux = 0,
cor_ryyi_rxyi = 0,
cor_ryyi_ux = 0,
cor_rxyi_ux = 0
)
estimate_var_qya(
qyi,
var_qyi = 0,
rxyi,
var_rxyi = 0,
ux,
var_ux = 0,
cor_qyi_rxyi = 0,
cor_qyi_ux = 0,
cor_rxyi_ux = 0
)
estimate_var_qyi(
qya,
var_qya = 0,
rxyi,
var_rxyi = 0,
ux,
var_ux = 0,
cor_qya_rxyi = 0,
cor_qya_ux = 0,
cor_rxyi_ux = 0
)
estimate_var_ryyi(
ryya,
var_ryya = 0,
rxyi,
var_rxyi = 0,
ux,
var_ux = 0,
cor_ryya_rxyi = 0,
cor_ryya_ux = 0,
cor_rxyi_ux = 0
)
qxa |
Square-root of applicant reliability estimate. |
var_qxa |
Variance of square-root of applicant reliability estimate. |
ux |
Observed-score u ratio. |
var_ux |
Variance of observed-score u ratio. |
cor_qxa_ux |
Correlation between qxa and ux. |
ux_observed |
Logical vector determining whether u ratios are observed-score u ratios ( |
indirect_rr |
Logical vector determining whether reliability values are associated with indirect range restriction ( |
qxi |
Square-root of incumbent reliability estimate. |
var_qxi |
Variance of square-root of incumbent reliability estimate. |
cor_qxi_ux |
Correlation between qxi and ux. |
rxxa |
Incumbent reliability value. |
var_rxxa |
Variance of incumbent reliability values. |
cor_rxxa_ux |
Correlation between rxxa and ux. |
rxxi |
Incumbent reliability value. |
var_rxxi |
Variance of incumbent reliability values. |
cor_rxxi_ux |
Correlation between rxxi and ux. |
rxxi_type , rxxa_type , qxi_type , qxa_type |
String vector identifying the types of reliability estimates supplied (e.g., "alpha", "retest", "interrater_r", "splithalf"). See the documentation for |
rxx |
Generic argument for a reliability estimate (whether this is a reliability or the square root of a reliability is clarified by the |
var_rxx |
Generic argument for the variance of reliability estimates (whether this pertains to reliabilities or the square roots of reliabilities is clarified by the |
cor_rxx_ux |
Correlation between rxx and ux. |
rxx_restricted |
Logical vector determining whether reliability estimates were incumbent reliabilities ( |
rxx_as_qx |
Logical vector determining whether the reliability estimates were reliabilities ( |
ut |
True-score u ratio. |
var_ut |
Variance of true-score u ratio. |
cor_rxx_ut |
Correlation between rxx and ut. |
ryyi |
Incumbent reliability value. |
var_ryyi |
Variance of incumbent reliability values. |
rxyi |
Incumbent correlation between X and Y. |
var_rxyi |
Variance of incumbent correlations. |
cor_ryyi_rxyi |
Correlation between ryyi and rxyi. |
cor_ryyi_ux |
Correlation between ryyi and ux. |
cor_rxyi_ux |
Correlation between rxyi and ux. |
qyi |
Square-root of incumbent reliability estimate. |
var_qyi |
Variance of square-root of incumbent reliability estimate. |
cor_qyi_rxyi |
Correlation between qyi and rxyi. |
cor_qyi_ux |
Correlation between qyi and ux. |
qya |
Square-root of applicant reliability estimate. |
var_qya |
Variance of square-root of applicant reliability estimate. |
cor_qya_rxyi |
Correlation between qya and rxyi. |
cor_qya_ux |
Correlation between qya and ux. |
ryya |
Applicant reliability value. |
var_ryya |
Variance of applicant reliability values. |
cor_ryya_rxyi |
Correlation between ryya and rxyi. |
cor_ryya_ux |
Correlation between ryya and ux. |
#### Partial derivatives to estimate the variance of qxa using ux ####
Indirect range restriction:
b_{u_{X}}=\frac{(q_{X_{i}}^{2}-1)u_{X}}{\sqrt{(q_{X_{i}}^{2}-1)u_{X}^{2}+1}}
b_{q_{X_{i}}}=\frac{q_{X_{i}}^{2}u_{X}^{2}}{\sqrt{(q_{X_{i}}^{2}-1)u_{X}^{2}+1}}
Direct range restriction:
b_{u_{X}}=\frac{q_{X_{i}}^{2}(q_{X_{i}}^{2}-1)u_{X}}{\sqrt{-\frac{q_{X_{i}}^{2}}{q_{X_{i}}^{2}(u_{X}^{2}-1)-u_{X}^{2}}}(q_{X_{i}}^{2}(u_{X}^{2}-1)-u_{X}^{2})^{2}}
b_{q_{X_{i}}}=\frac{q_{X_{i}}u_{X}^{2}}{\sqrt{-\frac{q_{X_{i}}^{2}}{q_{X_{i}}^{2}(u_{X}^{2}-1)-u_{X}^{2}}}(q_{X_{i}}^{2}(u_{X}^{2}-1)-u_{X}^{2})^{2}}
#### Partial derivatives to estimate the variance of rxxa using ux ####
Indirect range restriction:
b_{u_{X}}=2\left(\rho_{XX_{i}}-1\right)u_{X}
\rho_{XX_{i}}: b_{\rho_{XX_{i}}}=u_{X}^{2}
Direct range restriction:
b_{u_{X}}=\frac{2(\rho_{XX_{i}}-1)\rho_{XX_{i}}u_{X}}{(-\rho_{XX_{i}}u_{X}^{2}+\rho_{XX_{i}}+u_{X}^{2})^{2}}
b_{\rho_{XX_{i}}}=\frac{u_{X}^{2}}{(-\rho_{XX_{i}}u_{X}^{2}+\rho_{XX_{i}}+u_{X}^{2})^{2}}
#### Partial derivatives to estimate the variance of rxxa using ut ####
b_{u_{T}}=\frac{2(\rho_{XX_{i}}-1)*\rho_{XX_{i}}u_{T}}{(-\rho_{XX_{i}}u_{T}^{2}+\rho_{XX_{i}}+u_{T}^{2})^{2}}
b_{\rho_{XX_{i}}}=\frac{u_{T}^{2}}{(-\rho_{XX_{i}}u_{T}^{2}+\rho_{XX_{i}}+u_{T}^{2})^{2}}
#### Partial derivatives to estimate the variance of qxa using ut ####
b_{u_{T}}=\frac{q_{X_{i}}^{2}(q_{X_{i}}^{2}-1)u_{T}}{\sqrt{\frac{-q_{X_{i}}^{2}}{q_{X_{i}}^{2}*(u_{T}^{2}-1)-u_{T}^{2}}}(q_{X_{i}}^{2}(u_{T}^{2}-1)-u_{T}^{2})^{2}}
b_{q_{X_{i}}}=\frac{q_{X_{i}}u_{T}^{2}}{\sqrt{\frac{q_{X_{i}}^{2}}{u_{T}^{2}-q_{X_{i}}^{2}(u_{T}^{2}-1)}}(u_{T}^{2}-q_{X_{i}}^{2}(u_{T}^{2}-1))^{2}}
#### Partial derivatives to estimate the variance of qxi using ux ####
Indirect range restriction:
b_{u_{X}}=\frac{1-qxa^{2}}{u_{X}^{3}\sqrt{\frac{q_{X_{a}}^{2}+u_{X}^{2}-1}{u_{X}^{2}}}}
b_{q_{X_{a}}}=\frac{q_{X_{a}}}{u_{X}^{2}\sqrt{\frac{q_{X_{a}-1}^{2}}{u_{X}^{2}}+1}}
Direct range restriction:
b_{u_{X}}=-\frac{q_{X_{a}}^{2}(q_{X_{a}}^{2}-1)u_{X}}{\sqrt{\frac{q_{X_{a}}^{2}u_{X}^{2}}{q_{X_{a}}^{2}(u_{X}^{2}-1)+1}}(q_{X_{a}}^{2}(u_{X}^{2}-1)+1)^{2}}
b_{q_{X_{a}}}=\frac{q_{X_{a}}u_{X}^{2}}{\sqrt{\frac{q_{X_{a}}^{2}u_{X}^{2}}{q_{X_{a}}^{2}(u_{X}^{2}-1)+1}}(q_{X_{a}}^{2}(u_{X}^{2}-1)+1)^{2}}
#### Partial derivatives to estimate the variance of rxxi using ux ####
Indirect range restriction:
b_{u_{X}}=\frac{2-2\rho_{XX_{a}}}{u_{X}^{3}}
b_{\rho_{XX_{a}}}=\frac{1}{u_{X}^{2}}
Direct range restriction:
b_{u_{X}}=-\frac{2(\rho_{XX_{a}}-1)\rho_{XX_{a}}u_{X}}{(\rho_{XX_{a}}(u_{X}^{2}-1)+1)^{2}}
b_{\rho_{XX_{a}}}=\frac{u_{X}^{2}}{(\rho_{XX_{a}}(u_{X}^{2}-1)+1)^{2}}
#### Partial derivatives to estimate the variance of rxxi using ut ####
u_{T}: b_{u_{T}}=-\frac{2(\rho_{XX_{a}}-1)\rho_{XX_{a}}u_{T}}{(\rho_{XX_{a}}(u_{T}^{2}-1)+1)^{2}}
b_{\rho_{XX_{a}}}=\frac{u_{T}^{2}}{(\rho_{XX_{a}}(u_{T}^{2}-1)+1)^{2}}
#### Partial derivatives to estimate the variance of qxi using ut ####
b_{u_{T}}=-\frac{(q_{X_{a}}-1)q_{X_{a}}^{2}(q_{X_{a}}+1)u_{T}}{\sqrt{\frac{q_{X_{a}}^{2}u_{T}^{2}}{q_{X_{a}}^{2}u_{T}^{2}-q_{X_{a}}^{2}+1}}(q_{X_{a}}^{2}u_{T}^{2}-q_{X_{a}}^{2}+1)^{2}}
b_{q_{X_{a}}}=\frac{q_{X_{a}}u_{T}^{2}}{\sqrt{\frac{q_{X_{a}}^{2}u_{T}^{2}}{q_{X_{a}}^{2}u_{T}^{2}-q_{X_{a}}^{2}+1}}(q_{X_{a}}^{2}u_{T}^{2}-q_{X_{a}}^{2}+1)^{2}}
#### Partial derivatives to estimate the variance of ut using qxi ####
b_{u_{X}}=\frac{q_{X_{i}}^{2}u_{X}}{\sqrt{\frac{q_{X_{i}}^{2}u_{X}^{2}}{(q_{X_{i}}^{2}-1)u_{X}^{2}+1}}((q_{X_{i}}^{2}-1)u_{X}^{2}+1)^{2}}
b_{q_{X_{i}}}=-\frac{u_{X}^{2}(u_{X}^{2}-1)}{\sqrt{\frac{q_{X_{i}}^{2}u_{X}^{2}}{(q_{X_{i}}^{2}-1)u_{X}^{2}+1}}((q_{X_{i}}^{2}-1)u_{X}^{2}+1)^{2}}
#### Partial derivatives to estimate the variance of ut using rxxi ####
b_{u_{X}}=\frac{\rho_{XX_{i}}u_{X}}{\sqrt{\frac{\rho_{XX_{i}}u_{X}^{2}}{(\rho_{XX_{i}}-1)u_{X}^{2}+1}}((\rho_{XX_{i}}-1)u_{X}^{2}+1)^{2}}
b_{\rho_{XX_{i}}}=-\frac{u_{X}^{2}(u_{X}^{2}-1)}{2\sqrt{\frac{\rho_{XX_{i}}u_{X}^{2}}{(\rho_{XX_{i}}-1)u_{X}^{2}+1}}((\rho_{XX_{i}}-1)u_{X}^{2}+1)^{2}}
#### Partial derivatives to estimate the variance of ut using qxa ####
b_{u_{X}}=\frac{u_{X}}{q_{X_{a}}^{2}\sqrt{\frac{q_{X_{a}}^{2}+u_{X}^{2}-1}{q_{X_{a}}^{2}}}}
b_{q_{X_{a}}}=\frac{1-u_{X}^{2}}{q_{X_{a}}^{3}\sqrt{\frac{q_{X_{a}}^{2}+u_{X}^{2}-1}{q_{X_{a}}^{2}}}}
#### Partial derivatives to estimate the variance of ut using rxxa ####
b_{u_{X}}=\frac{u_{X}}{\rho_{XX_{a}}\sqrt{\frac{\rho_{XX_{a}}+u_{X}^{2}-1}{\rho_{XX_{a}}}}}
b_{\rho_{XX_{a}}}=\frac{1-u_{X}^{2}}{2\rho_{XX_{a}}^{2}\sqrt{\frac{\rho_{XX_{a}}+u_{X}^{2}-1}{\rho_{XX_{a}}}}}
#### Partial derivatives to estimate the variance of ux using qxi ####
b_{u_{T}}=\frac{q_{X_{i}}^{2}u_{T}}{\sqrt{\frac{u_{T}^{2}}{u_{T}^{2}-q_{X_{i}}^{2}(u_{T}^{2}-1)}}(u_{T}^{2}-q_{X_{i}}^{2}(u_{T}^{2}-1))^{2}}
b_{q_{X_{i}}}=\frac{q_{X_{i}}(u_{T}^{2}-1)\left(\frac{u_{T}^{2}}{u_{T}^{2}-q_{X_{i}}^{2}(u_{T}^{2}-1)}\right)^{1.5}}{u_{T}^{2}}
#### Partial derivatives to estimate the variance of ux using rxxi ####
b_{u_{T}}=\frac{\rho_{XX_{i}}u_{T}}{\sqrt{\frac{u_{T}^{2}}{-\rho_{XX_{i}}u_{T}^{2}+\rho_{XX_{i}}+u_{T}^{2}}}(-\rho_{XX_{i}}u_{T}^{2}+\rho_{XX_{i}}+u_{T}^{2})^{2}}
b_{\rho_{XX_{i}}}=\frac{(u_{T}^{2}-1)\left(\frac{u_{T}^{2}}{-\rho_{XX_{i}}u_{T}^{2}+\rho_{XX_{i}}+u_{T}^{2}}\right)^{1.5}}{2u_{T}^{2}}
#### Partial derivatives to estimate the variance of ux using qxa ####
b_{u_{T}}=\frac{q_{X_{a}}^{2}u_{T}}{\sqrt{q_{X_{a}}^{2}(u_{T}^{2}-1)+1}}
b_{q_{X_{a}}}=\frac{q_{X_{a}}(u_{T}-1)}{\sqrt{q_{X_{a}}^{2}(u_{T}^{2}-1)+1}}
#### Partial derivatives to estimate the variance of ux using rxxa ####
b_{u_{T}}=\frac{\rho_{XX_{a}}u_{T}}{\sqrt{\rho_{XX_{a}}(u_{T}^{2}-1)+1}}
b_{\rho_{XX_{a}}}=\frac{u_{T}^{2}-1}{2\sqrt{\rho_{XX_{a}}(u_{T}^{2}-1)+1}}
#### Partial derivatives to estimate the variance of ryya ####
b_{\rho_{YY_{i}}}=\frac{1}{\rho_{XY_{i}}^{2}\left(\frac{1}{u_{X}^{2}}-1\right)+1}
b_{u_{X}}=\frac{2(\rho_{YY_{i}}-1)\rho_{XY_{i}}^{2}u_{X}}{(u_{X}^{2}-\rho_{XY_{i}}^{2}(u_{X}^{2}-1))^{2}}
b_{\rho_{XY_{i}}}=\frac{2(\rho_{YY_{i}}-1)\rho_{XY_{i}}u_{X}^{2}(u_{X}^{2}-1)}{(u_{X}^{2}-\rho_{XY_{i}}^{2}(u_{X}^{2}-1))^{2}}
#### Partial derivatives to estimate the variance of qya ####
b_{q_{Y_{i}}}=\frac{q_{Y_{i}}}{\left[1-\rho_{XY_{i}}^{2}\left(1-\frac{1}{u_{X}^{2}}\right)\right]\sqrt{1-\frac{1-q_{Y_{i}}^{2}}{1-\rho_{XY_{i}}^{2}\left(1-\frac{1}{u_{X}^{2}}\right)}}}
b_{u_{X}}=-\frac{(1-q_{Y_{i}}^{2})\rho_{XY_{i}}^{2}}{u_{X}^{3}\left[1-\rho_{XY_{i}}^{2}\left(1-\frac{1}{u_{X}^{2}}\right)\right]\sqrt{1-\frac{1-q_{Y_{i}}^{2}}{1-\rho_{XY_{i}}^{2}\left(1-\frac{1}{u_{X}^{2}}\right)}}}
b_{\rho_{XY_{i}}}=-\frac{(1-q_{Y_{i}}^{2})\rho_{XY_{i}}\left(1-\frac{1}{u_{X}^{2}}\right)}{\left[1-\rho_{XY_{i}}^{2}\left(1-\frac{1}{u_{X}^{2}}\right)\right]\sqrt{1-\frac{1-q_{Y_{i}}^{2}}{1-\rho_{XY_{i}}^{2}\left(1-\frac{1}{u_{X}^{2}}\right)}}}
#### Partial derivatives to estimate the variance of ryyi ####
\rho_{YY_{a}}: b_{\rho_{YY_{a}}}=\rho_{XY_{i}}^{2}\left(\frac{1}{u_{X}^{2}}-1\right)+1
b_{u_{X}}=-\frac{2(\rho_{YY_{a}}-1)\rho_{XY_{i}}^{2}}{u_{X}^{3}}
b_{\rho_{XY_{i}}}=-\frac{2(\rho_{YY_{a}}-1)\rho_{XY_{i}}(u_{X}^{2}-1)}{u_{X}^{2}}
#### Partial derivatives to estimate the variance of qyi ####
b_{q_{Y_{a}}}=\frac{q_{Y_{a}}\left[1-\rho_{XY_{i}}^{2}\left(1-\frac{1}{u_{X}^{2}}\right)\right]}{\sqrt{1-\left(1-q_{Y_{a}}\right)\left[1-\rho_{XY_{i}}^{2}\left(1-\frac{1}{u_{X}^{2}}\right)\right]}}
b_{u_{X}}=\frac{(1-q_{Y_{a}}^{2})\rho_{XY_{i}}\left(1-\frac{1}{u_{X}^{2}}\right)}{\sqrt{1-\left(1-q_{Y_{a}}\right)\left[1-\rho_{XY_{i}}^{2}\left(1-\frac{1}{u_{X}^{2}}\right)\right]}}
b_{\rho_{XY_{i}}}=\frac{(1-q_{Y_{a}}^{2})\rho_{XY_{i}}^{2}}{u_{X}^{3}\sqrt{1-\left(1-q_{Y_{a}}\right)\left[1-\rho_{XY_{i}}^{2}\left(1-\frac{1}{u_{X}^{2}}\right)\right]}}
estimate_var_qxi(qxa = c(.8, .85, .9, .95), var_qxa = c(.02, .03, .04, .05),
ux = .8, var_ux = 0,
ux_observed = c(TRUE, TRUE, FALSE, FALSE),
indirect_rr = c(TRUE, FALSE, TRUE, FALSE))
estimate_var_qxa(qxi = c(.8, .85, .9, .95), var_qxi = c(.02, .03, .04, .05),
ux = .8, var_ux = 0,
ux_observed = c(TRUE, TRUE, FALSE, FALSE),
indirect_rr = c(TRUE, FALSE, TRUE, FALSE))
estimate_var_rxxi(rxxa = c(.8, .85, .9, .95),
var_rxxa = c(.02, .03, .04, .05), ux = .8, var_ux = 0,
ux_observed = c(TRUE, TRUE, FALSE, FALSE),
indirect_rr = c(TRUE, FALSE, TRUE, FALSE))
estimate_var_rxxa(rxxi = c(.8, .85, .9, .95), var_rxxi = c(.02, .03, .04, .05),
ux = .8, var_ux = 0,
ux_observed = c(TRUE, TRUE, FALSE, FALSE),
indirect_rr = c(TRUE, FALSE, TRUE, FALSE))
estimate_var_ut(rxx = c(.8, .85, .9, .95), var_rxx = 0,
ux = c(.8, .8, .9, .9), var_ux = c(.02, .03, .04, .05),
rxx_restricted = c(TRUE, TRUE, FALSE, FALSE),
rxx_as_qx = c(TRUE, FALSE, TRUE, FALSE))
estimate_var_ux(rxx = c(.8, .85, .9, .95), var_rxx = 0,
ut = c(.8, .8, .9, .9), var_ut = c(.02, .03, .04, .05),
rxx_restricted = c(TRUE, TRUE, FALSE, FALSE),
rxx_as_qx = c(TRUE, FALSE, TRUE, FALSE))
estimate_var_ryya(ryyi = .9, var_ryyi = .04, rxyi = .4, var_rxyi = 0, ux = .8, var_ux = 0)
estimate_var_ryya(ryyi = .9, var_ryyi = .04, rxyi = .4, var_rxyi = 0, ux = .8, var_ux = 0)
estimate_var_qyi(qya = .9, var_qya = .04, rxyi = .4, var_rxyi = 0, ux = .8, var_ux = 0)
estimate_var_ryyi(ryya = .9, var_ryya = .04, rxyi = .4, var_rxyi = 0, ux = .8, var_ux = 0)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.