CI.Rsq: Confidence Interval for R-squared

CI.RsqR Documentation

Confidence Interval for R-squared

Description

Computes the confidence interval for a desired level for the squared-multiple correlation

Usage

CI.Rsq(rsq, n, k, level = 0.95)

Arguments

rsq

Squared Multiple Correlation

n

Sample Size

k

Number of Predictors in Model

level

Significance Level for constructing the CI, default is .95

Details

CI is constructed based on the approximate SE of Rsq
sersq <- sqrt((4*rsq*(1-rsq)^2*(n-k-1)^2)/((n^2-1)*(n+3)))

Value

Returns a table with 4 elements

Rsq

Squared Multiple Correlation

SErsq

Standard error of Rsq

LCL

Lower Confidence Limit of the CI

UCL

Upper Confidence Limit of the CI

Note

This is an adequate approximation for n > 60

Author(s)

Thomas D. Fletcher t.d.fletcher05@gmail.com

References

Olkin, I. & Finn, J. D. (1995). Correlation Redux. Psychological Bulletin, 118, 155-164.

Cohen, J., Cohen, P., West, S. G., & Aiken, L. S. (2003). Applied multiple regression/correlation analysis for the behavioral sciences (3rd ed.). Mahwah, NJ: Lawrence Erlbaum.

See Also

CI.Rsqlm

Examples

# see section 3.6.2 Cohen et al (2003)
# 95 percent CI
CI.Rsq(.5032, 62, 4, level = .95)
# 80 percent CI
CI.Rsq(.5032, 62, 4, level = .80)


psychometric documentation built on Nov. 6, 2023, 1:06 a.m.