A quick tour of **qcc**

library(knitr)
opts_chunk$set(fig.align = "center",
               fig.width = 6, fig.height = 5,
               dev.args = list(pointsize=10),
               par = TRUE,
               message = FALSE,
               warning = FALSE)

knit_hooks$set(par = function(before, options, envir)
  { if(before && options$fig.show != "none") 
       par(mar=c(4.1,4.1,1.1,1.1), mgp=c(3,1,0), tcl=-0.5)
})

Introduction

qcc is a contributed R package for statistical quality control charts which provides:

This document gives a quick tour of qcc (version r packageVersion("qcc")) functionalities. It was written in R Markdown, using the knitr package for production.

Further details are provided in the following paper:

Scrucca, L. (2004) qcc: an R package for quality control charting and statistical process control. R News 4/1, 11-17.

For a nice blog post discussing the qcc package, in particular how to implement the Western Eletric Rules (WER), see http://blog.yhathq.com/posts/quality-control-in-r.html.

library(qcc)

Shewhart charts

x-bar chart

data(pistonrings)
diameter = with(pistonrings, qcc.groups(diameter, sample))
head(diameter)

q1 = qcc(diameter[1:25,], type="xbar", newdata=diameter[26:40,])
plot(q1, chart.all=FALSE)
plot(q1, add.stats=FALSE)
q1 = qcc(diameter[1:25,], type="xbar", newdata=diameter[26:40,],
         confidence.level=0.99)

Add warning limits at 2 std. deviations:

q1 = qcc(diameter[1:25,], type="xbar", newdata=diameter[26:40,], plot=FALSE)
(warn.limits = limits.xbar(q1$center, q1$std.dev, q1$sizes, 2))
plot(q1, restore.par = FALSE)
abline(h = warn.limits, lty = 3, col = "chocolate")

R chart

q2 = qcc(diameter[1:25,], type="R")
summary(q2)
q3 = qcc(diameter[1:25,], type="R", newdata=diameter[26:40,])
summary(q3)

S chart

q4 = qcc(diameter[1:25,], type="S")
summary(q4)
q5 = qcc(diameter[1:25,], type="S", newdata=diameter[26:40,])
summary(q5)

Variable control limits

out = c(9, 10, 30, 35, 45, 64, 65, 74, 75, 85, 99, 100)
diameter2 = with(pistonrings, qcc.groups(diameter[-out], sample[-out]))
summary(qcc(diameter2[1:25,], type="xbar"))
summary(qcc(diameter2[1:25,], type="R"))

p and np charts

data(orangejuice)
q1 = with(orangejuice, 
          qcc(D[trial], sizes=size[trial], type="p"))
summary(q1)

q2 = with(orangejuice, 
          qcc(D[trial], sizes=size[trial], type="np"))
summary(q2)

Remove out-of-control points (see help(orangejuice) for the reasons):

inc = setdiff(which(orangejuice$trial), c(15,23))
q2 = with(orangejuice, 
          qcc(D[inc], sizes=size[inc], type="p",
              newdata=D[!trial], newsizes=size[!trial]))
data(orangejuice2)
q1 = with(orangejuice2,
          qcc(D[trial], sizes=size[trial], type="p", 
              newdata=D[!trial], newsizes=size[!trial]))
summary(q1)

c and u charts

data(circuit)
q1 = with(circuit, 
          qcc(x[trial], sizes=size[trial], type="c"))
summary(q1)

Remove out-of-control points (see help(circuit) for the reasons)

inc = setdiff(which(circuit$trial), c(6,20))
q2 = with(circuit, 
          qcc(x[inc], sizes=size[inc], type="c", labels=inc, 
              newdata=x[!trial], newsizes=size[!trial], newlabels=which(!trial)))
summary(q2)

q3 = with(circuit, 
          qcc(x[inc], sizes=size[inc], type="u", labels=inc, 
              newdata=x[!trial], newsizes=size[!trial], newlabels=which(!trial)))
summary(q3)
data(pcmanufact)
q1 = with(pcmanufact, 
          qcc(x, sizes=size, type="u"))
summary(q1)

Continuous one-at-time data

# viscosity data (Montgomery, pag. 242)
x = c(33.75, 33.05, 34, 33.81, 33.46, 34.02, 33.68, 33.27, 33.49, 33.20,
       33.62, 33.00, 33.54, 33.12, 33.84)
q1 = qcc(x, type="xbar.one")
summary(q1)
q2 = qcc(x, type="xbar.one", std.dev = "SD")
summary(q2)

Standardized p chart

In this example we show how to extend the package by defining a new control chart, i.e. a standardized p chart (type = "p.std").

Function to compute group statistics and center:

stats.p.std = function(data, sizes)
{
  data = as.vector(data)
  sizes = as.vector(sizes)
  pbar = sum(data)/sum(sizes)
  z = (data/sizes - pbar)/sqrt(pbar*(1-pbar)/sizes)
  list(statistics = z, center = 0)
}

Function to compute within-group standard deviation:

sd.p.std = function(data, sizes, ...) { return(1) }

Function to compute control limits based on normal approximation:

limits.p.std = function(center, std.dev, sizes, conf)
{
  if(conf >= 1) 
    { lcl = -conf
      ucl = +conf 
  }
  else
    { if(conf > 0 & conf < 1)
        { nsigmas = qnorm(1 - (1 - conf)/2)
          lcl = -nsigmas
          ucl = +nsigmas }
      else stop("invalid 'conf' argument.") 
  }
  limits = matrix(c(lcl, ucl), ncol = 2)
  rownames(limits) = rep("", length = nrow(limits))
  colnames(limits) = c("LCL", "UCL")
  return(limits)
}

Example with simulated data:

# set unequal sample sizes
n = c(rep(50,5), rep(100,5), rep(25, 5))
# generate randomly the number of successes
x = rbinom(length(n), n, 0.2)
# plot the control chart with variable limits
summary(qcc(x, type="p", size=n))
# plot the standardized control chart
summary(qcc(x, type="p.std", size=n))

Operating Characteristic Curves

An operating characteristic curve graphically provides information about the probability of not detecting a shift in the process. The function oc.curves() is a generic function which calls the proper function depending on the type of input 'qcc' object.

data(pistonrings)
diameter = with(pistonrings, qcc.groups(diameter, sample))
q = qcc(diameter, type="xbar", nsigmas=3, plot=FALSE)
beta = oc.curves.xbar(q)
print(round(beta, digits=4))

data(orangejuice)
q = with(orangejuice, qcc(D[trial], sizes=size[trial], type="p", plot=FALSE))
beta = oc.curves(q)
print(round(beta, digits=4))

data(circuit)
q = with(circuit, qcc(x[trial], sizes=size[trial], type="c", plot=FALSE))
beta = oc.curves(q)
print(round(beta, digits=4))

Cusum chart

data(pistonrings)
diameter = with(pistonrings, qcc.groups(diameter, sample))

q1 = cusum(diameter[1:25,], decision.interval = 4, se.shift = 1)
summary(q1)

q2 = cusum(diameter[1:25,], newdata=diameter[26:40,])
summary(q2)
plot(q2, chart.all=FALSE)

EWMA

data(pistonrings)
diameter = with(pistonrings, qcc.groups(diameter, sample))

q1 = ewma(diameter[1:25,], lambda=0.2, nsigmas=3)
summary(q1)

q2 =  ewma(diameter[1:25,], lambda=0.2, nsigmas=2.7, 
            newdata=diameter[26:40,]) 
summary(q2)

x = c(33.75, 33.05, 34, 33.81, 33.46, 34.02, 33.68, 33.27, 
       33.49, 33.20, 33.62, 33.00, 33.54, 33.12, 33.84)
q3 =  ewma(x, lambda=0.2, nsigmas=2.7)
summary(q3)

Process capability analysis

data(pistonrings)
diameter = with(pistonrings, qcc.groups(diameter, sample))

q1 = qcc(diameter[1:25,], type="xbar", nsigmas=3, plot=FALSE)
process.capability(q1, spec.limits=c(73.95,74.05))
process.capability(q1, spec.limits=c(73.95,74.05), target=74.02)
process.capability(q1, spec.limits=c(73.99,74.01))
process.capability(q1, spec.limits = c(73.99, 74.1))

Multivariate Quality Control Charts

Multivariate subgrouped data from Ryan (2000, Table 9.2) with $p = 2$ variables, $m = 20$ samples, and $n = 4$ sample size for each sample:

X1 = matrix(c(72, 56, 55, 44, 97, 83, 47, 88, 57, 26, 46, 
49, 71, 71, 67, 55, 49, 72, 61, 35, 84, 87, 73, 80, 26, 89, 66, 
50, 47, 39, 27, 62, 63, 58, 69, 63, 51, 80, 74, 38, 79, 33, 22, 
54, 48, 91, 53, 84, 41, 52, 63, 78, 82, 69, 70, 72, 55, 61, 62, 
41, 49, 42, 60, 74, 58, 62, 58, 69, 46, 48, 34, 87, 55, 70, 94, 
49, 76, 59, 57, 46), ncol = 4)
X2 = matrix(c(23, 14, 13, 9, 36, 30, 12, 31, 14, 7, 10, 
11, 22, 21, 18, 15, 13, 22, 19, 10, 30, 31, 22, 28, 10, 35, 18, 
11, 10, 11, 8, 20, 16, 19, 19, 16, 14, 28, 20, 11, 28, 8, 6, 
15, 14, 36, 14, 30, 8, 35, 19, 27, 31, 17, 18, 20, 16, 18, 16, 
13, 10, 9, 16, 25, 15, 18, 16, 19, 10, 30, 9, 31, 15, 20, 35, 
12, 26, 17, 14, 16), ncol = 4)
X = list(X1 = X1, X2 = X2) # a list of matrices, one for each variable

q = mqcc(X, type = "T2")
summary(q)
ellipseChart(q)
ellipseChart(q, show.id = TRUE)

q = mqcc(X, type = "T2", pred.limits = TRUE)

Ryan (2000) discussed Xbar-charts for single variables computed adjusting the confidence level of the $T^2$ chart:

q1 = qcc(X1, type = "xbar", confidence.level = q$confidence.level^(1/2))
summary(q1)
q2 = qcc(X2, type = "xbar", confidence.level = q$confidence.level^(1/2))
summary(q2)

Generate new "in control" data:

Xnew = list(X1 = matrix(NA, 10, 4), X2 =  matrix(NA, 10, 4))
for(i in 1:4)
   { x = MASS::mvrnorm(10, mu = q$center, Sigma = q$cov)
     Xnew$X1[,i] = x[,1]
     Xnew$X2[,i] = x[,2] 
   }
qq = mqcc(X, type = "T2", newdata = Xnew, pred.limits = TRUE)
summary(qq)

ellipseChart(qq, show.id = TRUE)

Generate new "out of control" data:

Xnew = list(X1 = matrix(NA, 10, 4), X2 =  matrix(NA, 10, 4))
for(i in 1:4)
   { x = MASS::mvrnorm(10, mu = 1.2*q$center, Sigma = q$cov)
     Xnew$X1[,i] = x[,1]
     Xnew$X2[,i] = x[,2] 
   }
qq = mqcc(X, type = "T2", newdata = Xnew, pred.limits = TRUE)
summary(qq)

ellipseChart(qq, show.id = TRUE)

Individual observations data:

data(boiler)

q1 = mqcc(boiler, type = "T2.single", confidence.level = 0.999)
summary(q1)

Generate new "in control" data:

boilerNew = MASS::mvrnorm(10, mu = q1$center, Sigma = q1$cov)
q2 = mqcc(boiler, type = "T2.single", confidence.level = 0.999, 
          newdata = boilerNew, pred.limits = TRUE)
summary(q2)

Generate new "out of control" data:

boilerNew = MASS::mvrnorm(10, mu = 1.01*q1$center, Sigma = q1$cov)
q3 = mqcc(boiler, type = "T2.single", confidence.level = 0.999, 
          newdata = boilerNew, pred.limits = TRUE)
summary(q3)

Recompute by providing "robust" estimates for the means and the covariance matrix:

rob = MASS::cov.rob(boiler)
q4 = mqcc(boiler, type = "T2.single", center = rob$center, cov = rob$cov)
summary(q4)

Pareto chart

defect = c(80, 27, 66, 94, 33)
names(defect) = c("price code", "schedule date", "supplier code", "contact num.", "part num.")
pareto.chart(defect, ylab = "Error frequency")

Cause and effect diagram

cause.and.effect(cause = list(Measurements = c("Micrometers", "Microscopes", "Inspectors"),
                              Materials    = c("Alloys", "Lubricants", "Suppliers"),
                              Personnel    = c("Shifts", "Supervisors", "Training", "Operators"),
                              Environment  = c("Condensation", "Moisture"),
                              Methods      = c("Brake", "Engager", "Angle"),
                              Machines     = c("Speed", "Lathes", "Bits", "Sockets")),
                 effect = "Surface Flaws")

Process variation examples

In the following simulated data are used to describe some models for process variation. For further details see Wetherill, G.B. and Brown, D.W. (1991) Statistical Process Control, New York, Chapman and Hall, Chapter 3.

set.seed(123) # set seed for reproducibility

Simple random variation

$x_{ij} = \mu + \sigma_W \epsilon_{ij}$

mu = 100
sigma_W = 10
epsilon = rnorm(500)
x = matrix(mu + sigma_W*epsilon, ncol=10, byrow=TRUE)
q = qcc(x, type="xbar")
q = qcc(x, type="R")
q = qcc(x, type="S")

Between and within sample extra variation

$x_{ij} = \mu + \sigma_B u_i + \sigma_W \epsilon_{ij}$

mu = 100
sigma_W = 10
sigma_B = 5
epsilon = rnorm(500)
u = as.vector(sapply(rnorm(50), rep, 10))
x = mu + sigma_B*u + sigma_W*epsilon
x = matrix(x, ncol=10, byrow=TRUE)
q = qcc(x, type="xbar")
q = qcc(x, type="R")
q = qcc(x, type="S")

Autocorrelation

$x_{ij} = \mu + W_i + \sigma_W \epsilon_{ij}$
where $W_i = \rho W_{i-1} + \sigma_B u_i = \sigma_B u_i + \rho \sigma_B u_{i-1} + \rho^2 \sigma_B u_{i-2} + \ldots$,
and $W_0 = 0$.

mu = 100
rho = 0.8
sigma_W = 10
sigma_B = 5
epsilon = rnorm(500)
u = rnorm(500)
W = rep(0,100)
for(i in 2:length(W))
    W[i] = rho*W[i-1] + sigma_B*u[i]
x = mu + sigma_B*u + sigma_W*epsilon
x = matrix(x, ncol=10, byrow=TRUE)
q = qcc(x, type="xbar")
q = qcc(x, type="R")
q = qcc(x, type="S")

Recurring cycles

Assume we have 3 working turns of 8 hours each for each working day, so $8 \times 3 = 24$ points in time, and at each point we sample 5 units.

$x_{ij} = \mu + W_i + \sigma_W \epsilon_{ij}$
where $W_i$ ($i=1,\ldots,8$) is the cycle.

mu = 100
sigma_W = 10
epsilon = rnorm(120, sd=0.3)
W = c(-4, 0, 1, 2, 4, 2, 0, -2) # assumed workers cycle
W = rep(rep(W, rep(5,8)), 3)
x = mu + W + sigma_W*epsilon
x = matrix(x, ncol=5, byrow=TRUE)
q = qcc(x, type="xbar")
q = qcc(x, type="R")
q = qcc(x, type="S")

Trends

$x_{ij} = \mu + W_i + \sigma_W \epsilon_{ij}$
where $W_i = 0.2 i$

mu = 100
sigma_W = 10
epsilon = rnorm(500)
W = rep(0.2*1:100, rep(5,100))
x = mu + W + sigma_W*epsilon
x = matrix(x, ncol=10, byrow=TRUE)
q = qcc(x, type="xbar")
q = qcc(x, type="R")
q = qcc(x, type="S")

Mixture

$x_{ij} = \mu_1 p + \mu_2 (1-p) + \sigma_W \epsilon_{ij}$
where $p = \Pr(\text{Process #1})$.

mu1 = 90
mu2 = 110
sigma_W = 10
epsilon = rnorm(500)
p = rbinom(50, 1, 0.5)
mu = mu1*p + mu2*(1-p)
x = rep(mu, rep(10, length(mu))) + sigma_W*epsilon
x = matrix(x, ncol=10, byrow=TRUE)
q = qcc(x, type="xbar")
q = qcc(x, type="R")
q = qcc(x, type="S")

Sudden jumps

$x_{ij} = \mu_i + \sigma_W \epsilon_{ij}$
where $\mu_i$ is the mean of the process for state $i$ ($i=1,\ldots,k)$.

mu = rep(c(95,110,100,90), c(20,35,25,20))
sigma_W = 10
epsilon = rnorm(500)
x = rep(mu, rep(5, length(mu))) + sigma_W*epsilon
x = matrix(x, ncol=10, byrow=TRUE)
q = qcc(x, type="xbar")
q = qcc(x, type="R")
q = qcc(x, type="S")


Try the qcc package in your browser

Any scripts or data that you put into this service are public.

qcc documentation built on May 2, 2019, 9:15 a.m.