stats.g: Statistics used in computing and drawing a Shewhart g chart

Description Usage Arguments Details Value Note Author(s) References See Also Examples

Description

These functions are used to compute statistics required by the g chart (geometric distribution) for use with the qcc package.

Usage

1
2
3
stats.g(data, sizes)
sd.g(data, sizes, ...)
limits.g(center, std.dev, sizes, conf)

Arguments

data

the observed data values

center

sample center statistic

sizes

sample sizes (not used)

std.dev

standard deviation of geometric distribution

conf

a numeric value used to compute control limits, specifying the number of standard deviations (if 'conf' > 1) or the confidence level (if 0 < 'conf' < 1).

...

further arguments are ignored.

Details

The g chart plots the number of non-events between events. np charts do not work well when the probability of an event is rare (see example below). Instead of plotting the number of events, the g chart plots the number of non-events between events.

Value

The function stats.g() returns a list with components statistics and center.

The function sd.g() returns std.dev the standard deviation sqrt(1-p)/p.

The function limits.g() returns a matrix with lower and upper control limits.

Note

The geometric distribution is quite skewed so it is best to set conf at the required confidence interval (0 < conf < 1) rather than as a multiplier of sigma.

Author(s)

Greg Snow greg.snow@ihc.com

References

Kaminsky, FC et. al. (1992) Statistical Control Charts Based on a Geometric Distribution, Journal of Quality Technology, 24, pp 63–69.
Yang, Z et. al. (2002) On the Performance of Geometric Charts with Estimated Control Limits, Journal of Quality Technology, 34, pp 448–458.

See Also

qcc

Examples

1
2
3
4
success <- rbinom(1000, 1, 0.01)
num.noevent <- diff(which(c(1,success)==1))-1
qcc(success, type = "np", sizes = 1)
qcc(num.noevent, type = "g")

Example output

Package 'qcc' version 2.7
Type 'citation("qcc")' for citing this R package in publications.
List of 11
 $ call      : language qcc(data = success, type = "np", sizes = 1)
 $ type      : chr "np"
 $ data.name : chr "success"
 $ data      : int [1:1000, 1] 0 0 0 0 0 0 0 0 0 0 ...
  ..- attr(*, "dimnames")=List of 2
 $ statistics: Named int [1:1000] 0 0 0 0 0 0 0 0 0 0 ...
  ..- attr(*, "names")= chr [1:1000] "1" "2" "3" "4" ...
 $ sizes     : num [1:1000] 1 1 1 1 1 1 1 1 1 1 ...
 $ center    : num 0.009
 $ std.dev   : num 0.0944
 $ nsigmas   : num 3
 $ limits    : num [1, 1:2] 0 0.292
  ..- attr(*, "dimnames")=List of 2
 $ violations:List of 2
 - attr(*, "class")= chr "qcc"
List of 11
 $ call      : language qcc(data = num.noevent, type = "g")
 $ type      : chr "g"
 $ data.name : chr "num.noevent"
 $ data      : num [1:9, 1] 106 166 17 76 72 17 187 27 268
  ..- attr(*, "dimnames")=List of 2
 $ statistics: Named num [1:9] 106 166 17 76 72 17 187 27 268
  ..- attr(*, "names")= chr [1:9] "1" "2" "3" "4" ...
 $ sizes     : int [1:9] 1 1 1 1 1 1 1 1 1
 $ center    : num 104
 $ std.dev   : num 103
 $ nsigmas   : num 3
 $ limits    : num [1, 1:2] 0 414
  ..- attr(*, "dimnames")=List of 2
 $ violations:List of 2
 - attr(*, "class")= chr "qcc"
Warning message:
In limits.g(center = 104, std.dev = 103.498792263485, sizes = c(1L,  :
  The Geometric distribution is quite skewed, it is better to set conf at the required confidence level (0 < conf < 1) instead of as a multiplier of sigma.

qcc documentation built on May 2, 2019, 9:15 a.m.