Nothing
###############################################
# Function that prepares the bootstrapped gamObject for use
# with gam.fit4 or gam.fit5. It manly works out the re-parametrization
# to be used, which does not seem to depend on the smoothing parameters
# (hence it only needs to be calculated once).
#
.prepBootObj <- function(obj, eps, control)
{
if( is.null(control) ){ control <- list() }
ctrl <- do.call("gam.control", control)
# Overwriting default tolerance, useful for using sloppy convergence test on
# bootstrapped fits
if( !is.null(eps) ) { ctrl$epsilon <- eps }
obj$control <- ctrl
if (inherits(obj$family,"general.family")) {
obj$Sl <- Sl.setup(obj) ## prepare penalty sequence
obj$X <- Sl.initial.repara(obj$Sl,obj$X,both.sides=FALSE) ## re-parameterize accordingly
}
obj$rS <- mini.roots(obj$S, obj$off, ncol(obj$X), obj$rank)
Ssp <- totalPenaltySpace(obj$S,obj$H,obj$off,ncol(obj$X))
obj$Eb <- Ssp$E ## balanced penalty square root for rank determination purposes
obj$U1 <- cbind(Ssp$Y,Ssp$Z) ## eigen space basis
obj$Mp <- ncol(Ssp$Z) ## null space dimension
obj$UrS <- list() ## need penalty matrices in overall penalty range space...
if (length(obj$S)>0) for (i in 1:length(obj$S)) obj$UrS[[i]] <- t(Ssp$Y)%*%obj$rS[[i]] else i <- 0
if (!is.null(obj$H)) { ## then the sqrt fixed penalty matrix H is needed for (RE)ML
obj$UrS[[i+1]] <- t(Ssp$Y)%*%mroot(obj$H)
}
obj$family <- fix.family.link(obj$family)
return(obj)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.