fit_model2 | R Documentation |
Fits alternative multiple QTL models by performing variance component estimation using REML.
fit_model2(
data,
model,
probs = "joint",
polygenes = "none",
keep = TRUE,
verbose = TRUE,
pheno.col = NULL
)
data |
an object of class |
model |
an object of class |
probs |
a character string indicating if either |
polygenes |
a character string indicating if either |
keep |
if |
verbose |
if |
pheno.col |
a numeric vector with the phenotype column numbers to be summarized; if |
An object of class qtlpoly.fitted
which contains a list of results
for each trait with the following components:
pheno.col |
a phenotype column number. |
fitted |
a sommer object of class |
qtls |
a data frame with information from the mapped QTL. |
Guilherme da Silva Pereira, gdasilv@ncsu.edu
Covarrubias-Pazaran G (2016) Genome-assisted prediction of quantitative traits using the R package sommer. PLoS ONE 11 (6): 1–15. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1371/journal.pone.0156744")}.
Pereira GS, Gemenet DC, Mollinari M, Olukolu BA, Wood JC, Mosquera V, Gruneberg WJ, Khan A, Buell CR, Yencho GC, Zeng ZB (2020) Multiple QTL mapping in autopolyploids: a random-effect model approach with application in a hexaploid sweetpotato full-sib population, Genetics 215 (3): 579-595. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1534/genetics.120.303080")}.
read_data
, remim
# Estimate conditional probabilities using mappoly package
library(mappoly)
library(qtlpoly)
genoprob4x = lapply(maps4x[c(5)], calc_genoprob)
data = read_data(ploidy = 4, geno.prob = genoprob4x, pheno = pheno4x, step = 1)
# Search for QTL
remim.mod = remim(data = data, pheno.col = 1, w.size = 15, sig.fwd = 0.0011493379,
sig.bwd = 0.0002284465, d.sint = 1.5, n.clusters = 1)
# Fit model
fitted.mod = fit_model(data=data, model=remim.mod, probs="joint", polygenes="none")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.