Scaling models and classifiers for sparse matrix objects representing textual data in the form of a document-feature matrix. Includes original implementations of 'Laver', 'Benoit', and Garry's (2003) <doi:10.1017/S0003055403000698>, 'Wordscores' model, the Perry and 'Benoit' (2017) <doi:10.48550/arXiv.1710.08963> class affinity scaling model, and the 'Slapin' and 'Proksch' (2008) <doi:10.1111/j.1540-5907.2008.00338.x> 'wordfish' model, as well as methods for correspondence analysis, latent semantic analysis, and fast Naive Bayes and linear 'SVMs' specially designed for sparse textual data.
Package details |
|
---|---|
Author | Kenneth Benoit [cre, aut, cph] (<https://orcid.org/0000-0002-0797-564X>), Kohei Watanabe [aut] (<https://orcid.org/0000-0001-6519-5265>), Haiyan Wang [aut] (<https://orcid.org/0000-0003-4992-4311>), Patrick O. Perry [aut] (<https://orcid.org/0000-0001-7460-127X>), Benjamin Lauderdale [aut] (<https://orcid.org/0000-0003-3090-0969>), Johannes Gruber [aut] (<https://orcid.org/0000-0001-9177-1772>), William Lowe [aut] (<https://orcid.org/0000-0002-1549-6163>), Vikas Sindhwani [cph] (authored svmlin C++ source code), European Research Council [fnd] (ERC-2011-StG 283794-QUANTESS) |
Maintainer | Kenneth Benoit <kbenoit@lse.ac.uk> |
License | GPL-3 |
Version | 0.9.9 |
URL | https://github.com/quanteda/quanteda.textmodels |
Package repository | View on CRAN |
Installation |
Install the latest version of this package by entering the following in R:
|
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.