rq.process.object | R Documentation |
These are objects of class rq.process.
They represent the fit of a linear conditional quantile function model.
These arrays are computed by parametric linear programming methods using using the exterior point (simplex-type) methods of the Koenker–d'Orey algorithm based on Barrodale and Roberts median regression algorithm.
This class of objects is returned from the rq
function
to represent a fitted linear quantile regression model.
The "rq.process"
class of objects has
methods for the following generic
functions:
effects
, formula
, labels
, model.frame
, model.matrix
, plot
, predict
, print
, print.summary
, summary
The following components must be included in a legitimate rq.process
object.
sol
The primal solution array. This is a (p+3) by J matrix whose
first row contains the 'breakpoints'
tau_1, tau_2, \dots, tau_J
,
of the quantile function, i.e. the values in [0,1] at which the
solution changes, row two contains the corresponding quantiles
evaluated at the mean design point, i.e. the inner product of
xbar and b(tau_i)
, the third row contains the value of the objective
function evaluated at the corresponding tau_j
, and the last p rows
of the matrix give b(tau_i)
. The solution b(tau_i)
prevails from
tau_i
to tau_i+1
. Portnoy (1991) shows that
J=O_p(n \log n)
.
dsol
The dual solution array. This is a
n by J matrix containing the dual solution corresponding to sol,
the ij-th entry is 1 if y_i > x_i b(tau_j)
, is 0 if y_i < x_i
b(tau_j)
, and is between 0 and 1 otherwise, i.e. if the
residual is zero. See Gutenbrunner and Jureckova(1991)
for a detailed discussion of the statistical
interpretation of dsol. The use of dsol in inference is described
in Gutenbrunner, Jureckova, Koenker, and Portnoy (1994).
[1] Koenker, R. W. and Bassett, G. W. (1978). Regression quantiles, Econometrica, 46, 33–50.
[2] Koenker, R. W. and d'Orey (1987, 1994). Computing Regression Quantiles. Applied Statistics, 36, 383–393, and 43, 410–414.
[3] Gutenbrunner, C. Jureckova, J. (1991). Regression quantile and regression rank score process in the linear model and derived statistics, Annals of Statistics, 20, 305–330.
[4] Gutenbrunner, C., Jureckova, J., Koenker, R. and Portnoy, S. (1994) Tests of linear hypotheses based on regression rank scores. Journal of Nonparametric Statistics, (2), 307–331.
[5] Portnoy, S. (1991). Asymptotic behavior of the number of regression quantile breakpoints, SIAM Journal of Scientific and Statistical Computing, 12, 867–883.
rq
.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.