| logLik.gcrq | R Documentation |
The function returns the log-likelihood value(s) evaluated at the estimated coefficients
## S3 method for class 'gcrq'
logLik(object, summ=TRUE, ...)
## S3 method for class 'gcrq'
AIC(object, ..., k=2, bondell=FALSE)
object |
A |
summ |
If |
k |
Optional numeric specifying the penalty of the edf in the AIC formula. |
bondell |
Logical. If |
... |
optional arguments (nothing in |
The 'logLikelihood' is computed by assuming an asymmetric Laplace distribution for the response as in logLik.rq, namely n (\log(\tau(1-\tau))-1-\log(\rho_\tau/n)), where \rho_\tau is the minimized objective function. When there are multiple quantile curves j=1,2,...,J (and summ=TRUE) the formula is
n (\sum_j\log(\tau_j(1-\tau_j))-J-\log(\sum_j\rho_{\tau_j}/(n J)))
AIC.gcrq simply returns -2*logLik + k*edf where k is 2 or log(n).
The log likelihood(s) of the model fit object
Vito Muggeo
Bondell HD, Reich BJ, Wang H (2010) Non-crossing quantile regression curve estimation, Biometrika, 97: 825-838.
logLik.rq
## logLik(o) #a unique value (o is the fit object from gcrq)
## logLik(o, summ=FALSE) #vector of the log likelihood values
## AIC(o, k=-1) #BIC
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.