Nothing
#' olkin12_1 function
#' @export
#' @importFrom stats D cor dnorm lm logLik pchisq qchisq qnorm
#' @param omat 3 by 3 matrix having the correlation coefficients between y, x1 and x2, i.e. omat=cor(dat) where dat is N by 3 matrix having variables in the order of cbind (y,x1,x2)
#' @param nv Sample size
#' @keywords source
#' @return This function will be used as source code
olkin12_1 = function (omat,nv) {
#aova in p158 in Olkin and Finn (using my own code)
f=expression((c22 * ((c33/(c22 * c33 - c32^2)) * c21 + (c32/(c32^2 -
c22 * c33)) * c31)^2 + 2 * c32 * (((c33/(c22 * c33 - c32^2)) *
c21 + (c32/(c32^2 - c22 * c33)) * c31) * ((c32/(c32^2 - c22 *
c33)) * c21 + (c22/(c22 * c33 - c32^2)) * c31)) + c33 * ((c32/(c32^2 -
c22 * c33)) * c21 + (c22/(c22 * c33 - c32^2)) * c31)^2) -
c21^2)
c11=omat[1,1]
c21=omat[2,1]
c22=omat[2,2]
c31=omat[3,1]
c32=omat[3,2]
c33=omat[3,3]
av=array(0,3)
av[1]=eval(D(f,'c21'))
av[2]=eval(D(f,'c31'))
av[3]=eval(D(f,'c32'))
ov=matrix(0,3,3)
ov[1,1]=(1-omat[2,1]^2)^2/nv
ov[2,2]=(1-omat[3,1]^2)^2/nv
ov[3,3]=(1-omat[3,2]^2)^2/nv
ov[2,1]=(0.5*(2*omat[3,2]-omat[2,1]*omat[3,1])*(1-omat[3,2]^2-omat[2,1]^2-omat[3,1]^2)+omat[3,2]^3)/nv
ov[1,2]=ov[2,1]
ov[3,1]=(0.5*(2*omat[3,1]-omat[2,1]*omat[3,2])*(1-omat[3,2]^2-omat[2,1]^2-omat[3,1]^2)+omat[3,1]^3)/nv
ov[1,3]=ov[3,1]
ov[3,2]=(0.5*(2*omat[2,1]-omat[3,1]*omat[3,2])*(1-omat[3,2]^2-omat[2,1]^2-omat[3,1]^2)+omat[2,1]^3)/nv
ov[2,3]=ov[3,2]
#variance of the difference
aova=t(av)%*%ov%*%(av)
#return(aova)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.