Nothing
## ----setup, include=FALSE-----------------------------------------------------
knitr::opts_chunk$set(echo = TRUE,
fig.path = "./../man/figures/README-")
## ----intro--------------------------------------------------------------------
library(rapidsplithalf)
data(foodAAT)
data(raceIAT)
## ----singlediff---------------------------------------------------------------
rel<-
rapidsplit(data=foodAAT,
subjvar="subjectid", # Subject identifier
diffvars="is_pull", # The variable indicating the two conditions that need to be subtracted from each other
stratvars="stimid", # splits are stratified by stimulus ID such that each half features a near-equal number of trials for each stimulus
aggvar="RT", # Defining the variable to be aggregated
aggfunc="means", # Method to aggregate each condition: simple means
splits=5500)
print(rel)
## ----plotter,fig.asp=1--------------------------------------------------------
plot(rel)
## ----plotter2,fig.asp=1-------------------------------------------------------
plot(rel,type="all")
## ----doublediff---------------------------------------------------------------
rel2<-
rapidsplit(data=foodAAT,
subjvar="subjectid",
# We specify 2 diffvars for a double-difference score
diffvars=c("is_pull","is_target"),
stratvars="stimid",
aggvar="RT",
# We specify the median here
aggfunc="medians",
splits=5500)
print(rel2)
## ----iatrel,fig.asp=1---------------------------------------------------------
iatrel<-
rapidsplit(data=raceIAT,
subjvar="session_id",
diffvars="congruent",
# The subscorevar argument specifies that we want to compute
# multiple scores for each participant, based on subsets of
# their data, and then average the scores together
# as is done in the IAT D-score.
subscorevar="blocktype",
aggvar="latency",
splits=1000,
# the errorhandling argument controls how error trials
# are replaced with the block mean plus a penalty,
# as is done in the IAT D-score.
errorhandling=list(type="fixedpenalty",
errorvar="error",
fixedpenalty=600,
blockvar="block_number"),
# The standardize argument specifies that we want to
# divide the person's score by the standard deviation of their
# RTs, as in the IAT D-score.
standardize=TRUE)
print(iatrel)
plot(iatrel,show.labels=FALSE)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.