DMC | R Documentation |
The DMC is a two-process evidence accumulation model for the study of conflict tasks. It sums together a controlled and an automatic process to generate a single accumulator for generating the likelihood function. This accumulator has the same parameters as the SDDM with the exception of the drift rate, given by
v(x,t) = s*A*exp(-t/\tau)*[e*t/(\tau*(\alpha-1))]^{\alpha-1}*[(\alpha-1)/t - 1/\tau] + \mu_c.
dDMC(rt, resp, phi, x_res = "default", t_res = "default")
pDMC(rt, resp, phi, x_res = "default", t_res = "default")
rDMC(n, phi, dt = 1e-05)
rt |
vector of response times |
resp |
vector of responses ("upper" and "lower") |
phi |
parameter vector in the following order:
|
x_res |
spatial/evidence resolution |
t_res |
time resolution |
n |
number of samples |
dt |
step size of time. We recommend 0.00001 (1e-5) |
For the density a list of PDF values, log-PDF values, and the sum of the log-PDFs, for the distribution function a list of of CDF values, log-CDF values, and the sum of the log-CDFs, and for the random sampler a list of response times (rt) and response thresholds (resp).
Raphael Hartmann & Matthew Murrow
Ulrich, R., Schröter, H., Leuthold, H., & Birngruber, T. (2015). Automatic and controlled stimulus processing in conflict tasks: Superimposed diffusion processes and delta functions. Cognitive psychology, 78, 148-174.
# Probability density function
dDMC(rt = c(1.2, 0.6, 0.4), resp = c("upper", "lower", "lower"),
phi = c(0.3, 0.5, -1.0, 0.2, 0.05, 2.5, 3.0, 1.0, 0.5, 0.0, 0.0, 1.0))
# Cumulative distribution function
pDMC(rt = c(1.2, 0.6, 0.4), resp = c("upper", "lower", "lower"),
phi = c(0.3, 0.5, -1.0, 0.2, 0.05, 2.5, 3.0, 1.0, 0.5, 0.0, 0.0, 1.0))
# Random sampling
rDMC(n = 100, phi = c(0.3, 0.5, -1.0, 0.2, 0.05, 2.5, 3.0, 1.0, 0.5, 0.0, 0.0, 1.0))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.