RTM | R Documentation |
SDDM with thresholds that change with time. Thresholds are rational functions of the form
b_u(t) = -b_l(t) = 0.5*b_0*(1 - \kappa*t/(t + t_{0.5})).
dRTM(rt, resp, phi, x_res = "default", t_res = "default")
pRTM(rt, resp, phi, x_res = "default", t_res = "default")
rRTM(n, phi, dt = 1e-05)
rt |
vector of response times |
resp |
vector of responses ("upper" and "lower") |
phi |
parameter vector in the following order:
|
x_res |
spatial/evidence resolution |
t_res |
time resolution |
n |
number of samples |
dt |
step size of time. We recommend 0.00001 (1e-5) |
For the density a list of PDF values, log-PDF values, and the sum of the log-PDFs, for the distribution function a list of of CDF values, log-CDF values, and the sum of the log-CDFs, and for the random sampler a list of response times (rt) and response thresholds (resp).
Raphael Hartmann & Matthew Murrow
Churchland, A. K., Kiani, R., & Shadlen, M. N. (2008). Decision-making with multiple alternatives. Nature Neuroscience, 11(6), 693-702.
Hanks, T. D., Mazurek, M. E., Kiani, R., Hopp, E., & Shadlen, M. N. (2011). Elapsed Decision Time Affects the Weighting of Prior Probability in a Perceptual Decision Task. The Journal of Neuroscience, 31(17), 6339-6352.
Voskuilen, C., Ratcliff, R., & Smith, P. L. (2016). Comparing fixed and collapsing boundary versions of the diffusion model. Journal of Mathematical Psychology, 73, 59-79.
# Probability density function
dRTM(rt = c(1.2, 0.6, 0.4), resp = c("upper", "lower", "lower"),
phi = c(0.3, 0.5, 1.0, 1.0, 1.5, 0.5, 0.5, 0.0, 0.0, 1.0))
# Cumulative distribution function
pRTM(rt = c(1.2, 0.6, 0.4), resp = c("upper", "lower", "lower"),
phi = c(0.3, 0.5, 1.0, 1.0, 1.5, 0.5, 0.5, 0.0, 0.0, 1.0))
# Random sampling
rRTM(n = 100, phi = c(0.3, 0.5, 1.0, 1.0, 1.5, 0.5, 0.5, 0.0, 0.0, 1.0))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.