WTM | R Documentation |
SDDM with thresholds that change with time. Thresholds are Weibull functions of the
form b_u(t) = -b_l(t) = b_0 - b_0*(1 – c)*[1 - exp(-(t/\lambda)^{\kappa})].
dWTM(rt, resp, phi, x_res = "default", t_res = "default")
pWTM(rt, resp, phi, x_res = "default", t_res = "default")
rWTM(n, phi, dt = 1e-05)
rt |
vector of response times |
resp |
vector of responses ("upper" and "lower") |
phi |
parameter vector in the following order:
|
x_res |
spatial/evidence resolution |
t_res |
time resolution |
n |
number of samples |
dt |
step size of time. We recommend 0.00001 (1e-5) |
For the density a list of PDF values, log-PDF values, and the sum of the log-PDFs, for the distribution function a list of of CDF values, log-CDF values, and the sum of the log-CDFs, and for the random sampler a list of response times (rt) and response thresholds (resp).
Raphael Hartmann & Matthew Murrow
Hawkins, G. E., Forstmann, B. U., Wagenmakers, E.-J., Ratcliff, R., & Brown, S. D. (2015). Revisiting the Evidence for Collapsing Boundaries and Urgency Signals in Perceptual Decision-Making. The Journal of Neuroscience, 35(6), 2476-2484.
Palestro, J. J., Weichart, E., Sederberg, P. B., & Turner, B. M. (2018). Some task demands induce collapsing bounds: Evidence from a behavioral analysis. Psychonomic Bulletin & Review, 25(4), 1225-1248.
# Probability density function
dWTM(rt = c(1.2, 0.6, 0.4), resp = c("upper", "lower", "lower"),
phi = c(0.3, 0.5, 1.0, 1.0, 1.5, 0.2, 0.5, -1.0, 0.0, 0.0, 1.0))
# Cumulative distribution function
pWTM(rt = c(1.2, 0.6, 0.4), resp = c("upper", "lower", "lower"),
phi = c(0.3, 0.5, 1.0, 1.0, 1.5, 0.2, 0.5, -1.0, 0.0, 0.0, 1.0))
# Random sampling
rWTM(n = 100, phi = c(0.3, 0.5, 1.0, 1.0, 1.5, 0.2, 0.5, -1.0, 0.0, 0.0, 1.0),
dt = 0.0001)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.