Nothing
# __________________ #< 60cfc78f594e5611a6eaaf34a2b212ae ># __________________
# Apply transformation matrix ####
#' @title Apply transformation matrix to a set of columns
#' @description
#' \Sexpr[results=rd, stage=render]{lifecycle::badge("experimental")}
#'
#' Perform \link[base:matmult]{matrix multiplication} with a transformation matrix and a set of \code{data.frame} columns.
#'
#' The data points in \code{`data`} are moved prior to the transformation, to bring
#' the origin to \code{0} in all dimensions. After the transformation, the
#' inverse move is applied to bring the origin back to its original position. See \code{`Details`} section.
#'
#' The columns in \code{`data`} are transposed, making the operation (without the origin movement):
#' \deqn{mat ยท data[, cols]^T}
#'
#' The origin can be supplied as coordinates or as a function that returns coordinates. The
#' latter can be useful when supplying a grouped \code{data.frame} and transforming around e.g. the centroid
#' of each group.
#' @author Ludvig Renbo Olsen, \email{r-pkgs@@ludvigolsen.dk}
#' @param mat Transformation \code{matrix}. Must have the same number of columns as \code{`cols`}.
#' @param origin Coordinates of the origin. \code{Vector} with the same number
#' of elements as \code{`cols`} (i.e. origin_x, origin_y, ...).
#' Ignored when \code{`origin_fn`} is not \code{NULL}.
#' @param origin_col_name Name of new column with the origin coordinates. If \code{NULL}, no column is added.
#' @export
#' @return \code{data.frame} (\code{tibble}) with the new, transformed columns and the origin coordinates.
#' @details
#' Example with 2 columns (\code{x}, \code{y}) and a 2x2 transformation matrix:
#'
#' \itemize{
#' \item{Move origin to \code{(0, 0)}:
#'
#' \code{x = x - origin_x}
#'
#' \code{y = y - origin_y}}
#' \item{Convert to transposed matrix:
#'
#' \code{data_mat = rbind(x, y)}}
#' \item{Matrix multiplication:
#'
#' \code{transformed = mat \%*\% data_mat}}
#' \item{Move origin to original position (after extraction from \code{transformed}):
#'
#' \code{x = x + origin_x}
#'
#' \code{y = y + origin_y}}
#' }
#' @family mutate functions
#' @inheritParams multi_mutator_
#' @examples
#' # Attach packages
#' library(rearrr)
#' library(dplyr)
#' has_ggplot <- require(ggplot2) # Attach if installed
#'
#' # Set seed
#' set.seed(3)
#'
#' # Create a data frame
#' df <- data.frame(
#' "x" = 1:12,
#' "y" = 13:24,
#' "z" = runif(12),
#' "g" = c(
#' 1, 1, 1, 1, 2, 2,
#' 2, 2, 3, 3, 3, 3
#' )
#' )
#'
#' # Apply identity matrix
#' mat <- matrix(c(1, 0, 0, 0, 1, 0, 0, 0, 1), nrow = 3)
#' apply_transformation_matrix(
#' data = df,
#' mat = mat,
#' cols = c("x", "y", "z"),
#' origin = c(0, 0, 0)
#' )
#'
#' # Apply rotation matrix
#' # 90 degrees around z-axis
#' # Origin is the most centered point
#' mat <- matrix(c(0, 1, 0, -1, 0, 0, 0, 0, 1), nrow = 3)
#' res <- apply_transformation_matrix(
#' data = df,
#' mat = mat,
#' cols = c("x", "y", "z"),
#' origin_fn = most_centered
#' )
#'
#' # Plot the rotation
#' # z wasn't changed so we plot x and y
#' if (has_ggplot){
#' res %>%
#' ggplot(aes(x = x, y = y)) +
#' geom_point() +
#' geom_point(aes(x = x_transformed, y = y_transformed)) +
#' theme_minimal()
#' }
#'
#' # Apply rotation matrix to grouped data frame
#' # Around centroids
#' # Same matrix as before
#' res <- apply_transformation_matrix(
#' data = dplyr::group_by(df, g),
#' mat = mat,
#' cols = c("x", "y", "z"),
#' origin_fn = centroid
#' )
#'
#' # Plot the rotation
#' if (has_ggplot){
#' res %>%
#' ggplot(aes(x = x, y = y, color = g)) +
#' geom_point() +
#' geom_point(aes(x = x_transformed, y = y_transformed)) +
#' theme_minimal()
#' }
apply_transformation_matrix <- function(data,
mat,
cols,
origin = NULL,
origin_fn = NULL,
suffix = "_transformed",
keep_original = TRUE,
origin_col_name = ".origin",
overwrite = FALSE) {
# Check arguments ####
assert_collection <- checkmate::makeAssertCollection()
checkmate::assert_data_frame(data, add = assert_collection)
checkmate::assert_matrix(mat, add = assert_collection)
checkmate::assert_character(
cols,
any.missing = FALSE,
min.chars = 1,
min.len = 1,
unique = TRUE,
add = assert_collection
)
checkmate::assert_data_frame(data, min.cols = 3, add = assert_collection)
checkmate::assert_numeric(
origin,
min.len = 1,
any.missing = FALSE,
null.ok = TRUE,
add = assert_collection
)
checkmate::assert_function(origin_fn, null.ok = TRUE, add = assert_collection)
checkmate::assert_string(suffix, add = assert_collection)
checkmate::assert_string(origin_col_name, null.ok = TRUE, add = assert_collection)
checkmate::assert_flag(overwrite, add = assert_collection)
checkmate::reportAssertions(assert_collection)
checkmate::assert_names(
cols,
subset.of = colnames(data),
add = assert_collection
)
checkmate::reportAssertions(assert_collection)
if (ncol(mat) != length(cols)){
assert_collection$push("The number of columns in 'mat' must be the same as the length of 'cols'.")
}
checkmate::reportAssertions(assert_collection)
# End of argument checks ####
# Mutate with each multiplier
multi_mutator_(
data = data,
mutate_fn = apply_transformation_matrix_mutator_method_,
check_fn = NULL,
cols = cols,
mat = mat,
suffix = suffix,
overwrite = overwrite,
force_df = TRUE,
keep_original = keep_original,
origin = origin,
origin_fn = origin_fn,
origin_col_name = origin_col_name
)
}
apply_transformation_matrix_mutator_method_ <- function(data,
grp_id,
cols,
overwrite,
mat,
suffix,
origin,
origin_fn,
origin_col_name,
...) {
# Convert columns to list of vectors
dim_vectors <- as.list(data[, cols, drop = FALSE])
# Find origin if specified
origin <- apply_coordinate_fn_(
dim_vectors = dim_vectors,
coordinates = origin,
fn = origin_fn,
num_dims = length(cols),
coordinate_name = "origin",
fn_name = "origin_fn",
dim_var_name = "cols",
grp_id = grp_id,
allow_len_one = FALSE
)
# Apply transformation matrix
dim_vectors <- apply_transformation_matrix_dim_vectors_(
dim_vectors = dim_vectors,
mat = mat,
cols = cols,
origin = origin
)
# Add transformed columns to data
# Add dim_vectors as columns with the suffix
data <- add_dimensions_(
data = data,
new_vectors = setNames(dim_vectors, cols),
suffix = suffix,
overwrite = overwrite
)
# Add info columns
if (!is.null(origin_col_name)) {
data[[origin_col_name]] <- list_coordinates_(origin, cols)
}
data
}
# Apply transformation to dim_vectors
# Used internally
apply_transformation_matrix_dim_vectors_ <- function(dim_vectors, mat, cols, origin){
# Check arguments ####
assert_collection <- checkmate::makeAssertCollection()
checkmate::assert_list(dim_vectors, types = "numeric", any.missing = FALSE, add = assert_collection)
checkmate::assert_matrix(mat, mode = "numeric", any.missing = FALSE, add = assert_collection)
checkmate::assert_character(cols, min.len = 1, any.missing = FALSE, add = assert_collection)
checkmate::assert_numeric(origin, any.missing = FALSE, add = assert_collection)
checkmate::reportAssertions(assert_collection)
# End of argument checks ####
# Move origin
# x <- x - origin_coordinate
if (!is_zero_vector_(origin)){
dim_vectors <-
purrr::map2(.x = dim_vectors, .y = origin, .f = ~ {
.x - .y
})
}
# Convert to matrix
cols_matrix <- do.call(rbind, dim_vectors)
# Apply rotation matrix
cols_matrix <- mat %*% cols_matrix
# Extract dimensions
dim_vectors <-
purrr::map(.x = seq_len(nrow(cols_matrix)), .f = ~ {
as.vector(cols_matrix[.x, ])
})
# Move origin
# x <- x + origin_coordinate
if (!is_zero_vector_(origin)){
dim_vectors <-
purrr::map2(.x = dim_vectors, .y = origin, .f = ~ {
.x + .y
})
}
dim_vectors
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.