segregation_index | R Documentation |
redist.segcalc
calculates the dissimilarity index of segregation (see
Massey & Denton 1987 for more details) for a specified subgroup under any
redistricting plan.
segregation_index(
map,
group_pop,
total_pop = map[[attr(map, "pop_col")]],
.data = cur_plans()
)
redist.segcalc(plans, group_pop, total_pop)
map |
a |
group_pop |
A vector of populations for some subgroup of interest. |
total_pop |
A vector containing the populations of each geographic unit. |
.data |
a |
plans |
A matrix of congressional district assignments or a redist object. |
redist.segcalc
returns a vector where each entry is the
dissimilarity index of segregation (Massey & Denton 1987) for each
redistricting plan in algout
.
Fifield, Benjamin, Michael Higgins, Kosuke Imai and Alexander Tarr. (2016) "A New Automated Redistricting Simulator Using Markov Chain Monte Carlo." Working Paper. Available at http://imai.princeton.edu/research/files/redist.pdf.
Massey, Douglas and Nancy Denton. (1987) "The Dimensions of Social Segregation". Social Forces.
data(fl25)
data(fl25_enum)
data(fl25_adj)
## Get an initial partition
init_plan <- fl25_enum$plans[, 5118]
fl25$init_plan <- init_plan
## 25 precinct, three districts - no pop constraint ##
fl_map <- redist_map(fl25, existing_plan = 'init_plan', adj = fl25_adj)
alg_253 <- redist_flip(fl_map, nsims = 10000)
## Get Republican Dissimilarity Index from simulations
# old: rep_dmi_253 <- redist.segcalc(alg_253, fl25$mccain, fl25$pop)
rep_dmi_253 <- seg_dissim(alg_253, fl25, mccain, pop) |>
redistmetrics::by_plan(ndists = 3)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.