Mstep_block: Maximization step using latent variable and item response...

View source: R/m_step_block.R

Mstep_blockR Documentation

Maximization step using latent variable and item response blocks.

Description

Maximization step using latent variable and item response blocks.

Usage

Mstep_block(
  p,
  item_data,
  pred_data,
  prox_data,
  mean_predictors,
  var_predictors,
  eout,
  item_type,
  pen_type,
  tau_current,
  pen,
  alpha,
  gamma,
  anchor,
  final_control,
  samp_size,
  num_responses,
  num_items,
  num_quad,
  num_predictors,
  num_tau,
  max_tau
)

Arguments

p

List of parameters.

item_data

Matrix or data frame of item responses.

pred_data

Matrix or data frame of DIF and/or impact predictors.

prox_data

Vector of observed proxy scores.

mean_predictors

Possibly different matrix of predictors for the mean impact equation.

var_predictors

Possibly different matrix of predictors for the variance impact equation.

eout

E-step output, including matrix for item and impact equations, in addition to theta values (possibly adaptive).

item_type

Optional character value or vector indicating the type of item to be modeled.

pen_type

Character value indicating the penalty function to use.

tau_current

A single numeric value of tau that exists within tau_vec.

pen

Current penalty index.

alpha

Numeric value indicating the alpha parameter in the elastic net penalty function.

gamma

Numeric value indicating the gamma parameter in the MCP function.

anchor

Optional numeric value or vector indicating which item response(s) are anchors (e.g., anchor = 1).

final_control

Control parameters.

samp_size

Sample size in data set.

num_responses

Number of responses for each item.

num_items

Number of items in data set.

num_quad

Number of quadrature points used for approximating the latent variable.

num_predictors

Number of predictors.

num_tau

Logical indicating whether the minimum tau value needs to be identified during the regDIF procedure.

max_tau

Logical indicating whether to output the minimum tau value needed to remove all DIF from the model.

Value

a "list" of estimates obtained from the maximization step using multivariate Newton-Raphson


regDIF documentation built on May 29, 2024, 9:31 a.m.