em_estimation: Penalized expectation-maximization algorithm.

View source: R/em_estimation.R

em_estimationR Documentation

Penalized expectation-maximization algorithm.

Description

Penalized expectation-maximization algorithm.

Usage

em_estimation(
  p,
  item_data,
  pred_data,
  prox_data,
  mean_predictors,
  var_predictors,
  item_type,
  theta,
  pen_type,
  tau_vec,
  id_tau,
  num_tau,
  alpha,
  gamma,
  pen,
  pen.deriv,
  anchor,
  final_control,
  samp_size,
  num_items,
  num_responses,
  num_predictors,
  num_quad,
  adapt_quad,
  optim_method,
  estimator_history,
  estimator_limit,
  NA_cases,
  exit_code
)

Arguments

p

List of parameters with starting values obtained from preprocess.

item_data

Matrix or data frame of item responses.

pred_data

Matrix or data frame of DIF and/or impact predictors.

prox_data

Vector of observed proxy scores.

mean_predictors

Possibly different matrix of predictors for the mean impact equation.

var_predictors

Possibly different matrix of predictors for the variance impact equation.

item_type

Character value or vector indicating the type of item to be modeled.

theta

Vector of fixed quadrature points.

pen_type

Character value indicating the penalty function to use.

tau_vec

Vector of tau values that either are automatically generated or provided by the user. The first tau_vec will be equal to Inf to identify a minimal value of tau in which all DIF is removed from the model.

id_tau

Logical indicating whether to identify the minimum value of tau in which all DIF parameters are removed from the model.

num_tau

Numeric value indicating the number of tau values to run regDIF on.

alpha

Numeric value indicating the alpha parameter in the elastic net penalty function.

gamma

Numeric value indicating the gamma parameter in the MCP function.

pen

Index for the tau vector.

pen.deriv

Logical value indicating whether to use the second derivative of the penalized parameter during regularization. The default is TRUE.

anchor

Optional numeric value or vector indicating which item response(s) are anchors (e.g., anchor = 1).

final_control

Control parameters.

samp_size

Numeric value indicating the sample size.

num_items

Numeric value indicating the number of items.

num_responses

Vector with number of responses for each item.

num_predictors

Numeric value indicating the number of predictors.

num_quad

Numeric value indicating the number of quadrature points.

adapt_quad

Logical value indicating whether to use adaptive quad. needs to be identified.

optim_method

Character value indicating the type of optimization method to use.

estimator_history

List to save EM iterations for supplemental EM algorithm.

estimator_limit

Logical value indicating whether the EM algorithm reached the maxit limit in the previous estimation round.

NA_cases

Logical vector indicating if observation is missing.

exit_code

Integer indicating if the model has converged properly.

Value

a "list" of matrices with unprocessed model estimates


regDIF documentation built on May 29, 2024, 9:31 a.m.