Mstep_simple: Maximization step.

View source: R/m_step_simple.R

Mstep_simpleR Documentation

Maximization step.

Description

Maximization step.

Usage

Mstep_simple(
  p,
  item_data,
  pred_data,
  prox_data,
  mean_predictors,
  var_predictors,
  eout,
  item_type,
  pen_type,
  tau_current,
  pen,
  pen.deriv,
  alpha,
  gamma,
  anchor,
  final_control,
  samp_size,
  num_responses,
  num_items,
  num_quad,
  num_predictors,
  num_tau,
  max_tau,
  optim_method
)

Arguments

p

List of parameters.

item_data

Matrix or data frame of item responses.

pred_data

Matrix or data frame of DIF and/or impact predictors.

prox_data

Vector of observed proxy scores.

mean_predictors

Possibly different matrix of predictors for the mean impact equation.

var_predictors

Possibly different matrix of predictors for the variance impact equation.

eout

E-step output, including matrix for item and impact equations, in addition to theta values (possibly adaptive).

item_type

Optional character value or vector indicating the type of item to be modeled.

pen_type

Character value indicating the penalty function to use.

tau_current

A single numeric value of tau that exists within tau_vec.

pen

Current penalty index.

pen.deriv

Logical value indicating whether to use the second derivative of the penalized parameter during regularization. The default is TRUE.

alpha

Numeric value indicating the alpha parameter in the elastic net penalty function.

gamma

Numeric value indicating the gamma parameter in the MCP function.

anchor

Optional numeric value or vector indicating which item response(s) are anchors (e.g., anchor = 1).

final_control

Control parameters.

samp_size

Sample size in data set.

num_responses

Number of responses for each item.

num_items

Number of items in data set.

num_quad

Number of quadrature points used for approximating the latent variable.

num_predictors

Number of predictors.

num_tau

Logical indicating whether the minimum tau value needs to be identified during the regDIF procedure.

max_tau

Logical indicating whether to output the minimum tau value needed to remove all DIF from the model.

optim_method

Character value of the type of estimation method to use

Value

a "list" of estimates obtained from the maximization step using univariate Newton-Raphson


regDIF documentation built on May 29, 2024, 9:31 a.m.