Nothing
#' @importFrom stats var
# model: beta par1 = a par2 = b [x^(a-1)(1-x)^(b-1)]
SGD.MMD.beta = function(x, par1, par2, kernel, bdwth, burnin, nstep, stepsize, epsilon) {
n = length(x)
# preparation of the output "res"
res = list(par1=par1, par2=par2, stepsize=stepsize, bdwth=bdwth, error=NULL, estimator=NULL)
# sanity check for the initialization, otherwise, set the default initialization for SGD
par = c(0,0)
ex = mean(x)
va = var(x)
scaling = ex*(1-ex)/va-1
if (is.null(par1)) {
par[1] = ex*scaling
} else if ((is.double(par1)==FALSE)||(length(par1)!=1)) {
res$error = c(res$error,"par1 must be numerical")
} else if (par1<=0) {
res$error = c(res$error,"par1 must be positive")
} else {
par[1]=par1
}
if (is.null(par2)) {
par[2] = (1-ex)*scaling
} else if ((is.double(par2)==FALSE)||(length(par2)!=1)) {
res$error = c(res$error,"par2 must be numerical")
} else if (par2<=0) {
res$error = c(res$error,"par2 must be positive")
} else {
par[2]=par2
}
if (is.null(res$error)==FALSE) return(res)
# initialization of norm.grad
if (stepsize=="auto") stepsize = 1/scaling
norm.grad = epsilon
res$par1 = par[1]
res$par2 = par[2]
res$stepsize=stepsize
# BURNIN period
for (i in 1:burnin) {
x.sampled = rbeta(n = n, shape1 = par[1], shape2 = par[2])
ker = (K1d(x.sampled,x.sampled,kernel=kernel,bdwth=bdwth)-diag(n))/(n-1)-K1d(x.sampled,x,kernel=kernel,bdwth=bdwth)/n
gradL1 = digamma(par[1]+par[2])-digamma(par[1])+log(x.sampled)
gradL2 = digamma(par[1]+par[2])-digamma(par[2])+log(1-x.sampled)
grad = 2*c( mean(gradL1%*%ker) , mean(gradL2%*%ker) )
norm.grad = norm.grad + grad^2
par = par-stepsize*grad/sqrt(norm.grad)
par[1] = max(par[1],1/n)
par[2] = max(par[2],1/n)
}
# SGD period
par_mean = par
for (i in 1:nstep) {
x.sampled = rbeta(n = n, shape1 = par[1], shape2 = par[2])
ker = (K1d(x.sampled,x.sampled,kernel=kernel,bdwth=bdwth)-diag(n))/(n-1)-K1d(x.sampled,x,kernel=kernel,bdwth=bdwth)/n
gradL1 = digamma(par[1]+par[2])-digamma(par[1])+log(x.sampled)
gradL2 = digamma(par[1]+par[2])-digamma(par[2])+log(1-x.sampled)
grad = 2*c( mean(gradL1%*%ker) , mean(gradL2%*%ker) )
norm.grad = norm.grad + grad^2
par = par-stepsize*grad/sqrt(norm.grad)
par[1] = max(par[1],1/n)
par[2] = max(par[2],1/n)
par_mean = (par_mean*i + par)/(i+1)
}
# return
res$estimator = par_mean
return(res)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.