Nothing
## ----include=FALSE------------------------------------------------------------
library(knitr)
knitr::opts_chunk$set(
fig.width = 8, fig.height = 7, warning = FALSE,
message = FALSE, out.width = "70%"
)
pkgs <- c(
"rlang", "flextable", "performance", "see", "lmtest",
"ggplot2", "qqplotr", "ggrepel", "patchwork", "boot"
)
successfully_loaded <- vapply(pkgs, requireNamespace, FUN.VALUE = logical(1L), quietly = TRUE)
can_evaluate <- all(successfully_loaded)
if (can_evaluate) {
knitr::opts_chunk$set(eval = TRUE)
vapply(pkgs, require, FUN.VALUE = logical(1L), quietly = TRUE, character.only = TRUE)
} else {
knitr::opts_chunk$set(eval = FALSE)
}
## -----------------------------------------------------------------------------
# Load necessary libraries
library(performance)
library(see)
# Note: if you haven't installed the packages above,
# you'll need to install them first by using:
# install_if_not_installed(c("performance", "see"))
# Create a regression model (using data available in R by default)
model <- lm(mpg ~ wt * cyl + gear, data = mtcars)
## ----out.width="90%"----------------------------------------------------------
# Check model assumptions
check_model(model)
## -----------------------------------------------------------------------------
library(rempsyc)
## -----------------------------------------------------------------------------
pkgs <- c(
"flextable", "performance", "see", "lmtest", "ggplot2",
"qqplotr", "ggrepel", "patchwork", "boot"
)
install_if_not_installed(pkgs)
## ----eval = FALSE-------------------------------------------------------------
# View(nice_assumptions(model))
## -----------------------------------------------------------------------------
nice_table(nice_assumptions(model), col.format.p = 2:4)
## -----------------------------------------------------------------------------
# Define our dependent variables
DV <- names(mtcars[-1])
# Make list of all formulas
formulas <- paste(DV, "~ mpg")
# Make list of all models
models.list <- lapply(X = formulas, FUN = lm, data = mtcars)
# Make diagnostic table
assumptions.table <- nice_assumptions(models.list)
## ----eval = FALSE-------------------------------------------------------------
# View(assumptions.table)
## -----------------------------------------------------------------------------
nice_table(assumptions.table, col.format.p = 2:4)
## -----------------------------------------------------------------------------
nice_qq(
data = iris,
variable = "Sepal.Length",
group = "Species"
)
## -----------------------------------------------------------------------------
nice_qq(
data = iris,
variable = "Sepal.Length",
group = "Species",
colours = c("#00BA38", "#619CFF", "#F8766D"),
groups.labels = c("(a) Setosa", "(b) Versicolor", "(c) Virginica"),
grid = FALSE,
shapiro = TRUE,
title = NULL
)
## -----------------------------------------------------------------------------
nice_density(
data = iris,
variable = "Sepal.Length",
group = "Species"
)
## -----------------------------------------------------------------------------
nice_density(
data = iris,
variable = "Sepal.Length",
group = "Species",
colours = c("#00BA38", "#619CFF", "#F8766D"),
xtitle = "Sepal Length",
ytitle = "Density (vs. Normal Distribution)",
groups.labels = c("(a) Setosa", "(b) Versicolor", "(c) Virginica"),
grid = FALSE,
shapiro = TRUE,
histogram = TRUE,
title = "Density (Sepal Length)"
)
## ----fig.width=12, fig.height=7, out.width="100%"-----------------------------
nice_normality(
data = iris,
variable = "Sepal.Length",
group = "Species",
shapiro = TRUE,
histogram = TRUE,
title = "Density (Sepal Length)"
)
## -----------------------------------------------------------------------------
plot_outliers(
airquality,
group = "Month",
response = "Ozone"
)
## -----------------------------------------------------------------------------
plot_outliers(
airquality,
response = "Ozone"
)
## -----------------------------------------------------------------------------
plot_outliers(
airquality,
group = "Month",
response = "Ozone",
method = "sd",
criteria = 3.29,
colours = c("white", "black", "purple", "grey", "pink"),
ytitle = "Ozone",
xtitle = "Month of the Year"
)
## -----------------------------------------------------------------------------
find_mad(airquality, names(airquality), criteria = 3)
## -----------------------------------------------------------------------------
winsorize_mad(airquality$Ozone, criteria = 3) |>
head(30)
## -----------------------------------------------------------------------------
check_outliers(na.omit(airquality), method = "mcd")
## ----eval = FALSE-------------------------------------------------------------
# View(nice_var(
# data = iris,
# variable = "Sepal.Length",
# group = "Species"
# ))
## -----------------------------------------------------------------------------
# Define our dependent variables
DV <- names(iris[1:4])
# Make diagnostic table
var.table <- nice_var(
data = iris,
variable = DV,
group = "Species"
)
## ----eval = FALSE-------------------------------------------------------------
# View(var.table)
## -----------------------------------------------------------------------------
nice_varplot(
data = iris,
variable = "Sepal.Length",
group = "Species"
)
## -----------------------------------------------------------------------------
nice_varplot(
data = iris,
variable = "Sepal.Length",
group = "Species",
colours = c("#00BA38", "#619CFF", "#F8766D"),
ytitle = "Sepal Length",
groups.labels = c("(a) Setosa", "(b) Versicolor", "(c) Virginica")
)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.