Nothing
test_that("reservoirnet", {
testthat::skip_on_cran()
print(reticulate::py_config())
timesteps <- 2500
X <- reservoirnet::generate_data(dataset = "mackey_glass",n_timesteps = timesteps)$mackey_glass
X <- 2 * (X - min(X)) / (max(X) - min(X)) - 1
source <- reservoirnet::createNode("Input")
readout <- reservoirnet::createNode("Ridge")
reservoir <- reservoirnet::createNode("Reservoir", units = 100, lr=0.2, sr=0.8)
model <- reservoirnet::link(reservoir, readout)
Xtrain <- as.matrix(X[1:2001])
Ytrain <- as.matrix(X[10:2010])
model <- reservoirnet::reservoirR_fit(model, X=Xtrain, Y=Ytrain)
# Classification
japanese_vowels <- reservoirnet::generate_data(
dataset = "japanese_vowels",
repeat_targets=TRUE)$japanese_vowels
source <- reservoirnet::createNode("Input")
readout <- reservoirnet::createNode("Ridge",ridge=1e-6)
reservoir <- reservoirnet::createNode("Reservoir",
units = 500,
lr=0.1, sr=0.9)
# Example: [source >> reservoir, source] >> readout
model <- list(source %>>% reservoir, source) %>>% readout
model_fit <- reservoirnet::reservoirR_fit(node = model,
X = japanese_vowels$X_train,
Y = japanese_vowels$Y_train,
stateful=FALSE,
warmup = 2)
Y_pred <- reservoirnet::predict_seq(node = model_fit$fit, X = japanese_vowels$X_test,stateful = FALSE)
# formal test
testthat::expect(class(model)[1] == "reservoirpy.model.Model",
failure_message = "Output of fit function is not a reservoirpy.model.Model object")
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.