knitr::opts_chunk$set( collapse = TRUE, comment = "#>" )
While {reservr}
is capable of fitting distributions to censored and truncated observations, it does not directly
allow modelling the influence of exogenous variables observed alongside the primary outcome.
This is where the integration with TensorFlow comes in.
The TensorFlow integration allows to fit a neural network simultaneously to all parameters of a distribution while taking exogenous variables into account.
{reservr}
accepts all partial tensorflow networks which yield a single arbitrary-dimension rank 2 tensor
(e.g. any dense layer) as output and can connect suitable layers to this intermediate output such that the complete
network predicts the parameters of any pre-specified distribution family.
It also dynamically compiles a suitable conditional likelihood based loss, depending on the type of problem
(censoring, truncation), which can be optimized using the keras3::fit
implementation out-of-the box.
This means there is full flexibility with respect to callbacks, optimizers, mini-batching, etc.
library(reservr) library(tensorflow) library(keras3) library(tibble) library(ggplot2)
The following example will show the code necessary to fit a simple model with the same assumptions as OLS to data. As a true relationship we use $y = 2 x + \epsilon$ with $\epsilon \sim \mathcal{N}(0, 1)$. We will not use censoring or truncation.
if (reticulate::py_module_available("keras")) { set.seed(1431L) tensorflow::set_random_seed(1432L) dataset <- tibble( x = runif(100, min = 10, max = 20), y = 2 * x + rnorm(100) ) print(qplot(x, y, data = dataset)) # Specify distributional assumption of OLS: dist <- dist_normal(sd = 1.0) # OLS assumption: homoskedasticity # Optional: Compute a global fit global_fit <- fit(dist, dataset$y) # Define a neural network nnet_input <- layer_input(shape = 1L, name = "x_input") # in practice, this would be deeper nnet_output <- nnet_input optimizer <- optimizer_adam(learning_rate = 0.1) nnet <- tf_compile_model( inputs = list(nnet_input), intermediate_output = nnet_output, dist = dist, optimizer = optimizer, censoring = FALSE, # Turn off unnecessary features for this problem truncation = FALSE ) nnet_fit <- fit(nnet, x = dataset$x, y = dataset$y, epochs = 100L, batch_size = 100L, shuffle = FALSE) # Fix weird behavior of keras3 nnet_fit$params$epochs <- max(nnet_fit$params$epochs, length(nnet_fit$metrics$loss)) print(plot(nnet_fit)) pred_params <- predict(nnet, data = list(as_tensor(dataset$x, config_floatx()))) lm_fit <- lm(y ~ x, data = dataset) dataset$y_pred <- pred_params$mean dataset$y_lm <- predict(lm_fit, newdata = dataset, type = "response") p <- ggplot(dataset, aes(x = x, y = y)) %+% geom_point() %+% geom_line(aes(y = y_pred)) %+% geom_line(aes(y = y_lm), linetype = 2L) print(p) coef_nnet <- rev(as.numeric(nnet$model$get_weights())) coef_lm <- coef(lm_fit) print(coef_nnet) print(coef_lm) }
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.