Distribution | R Documentation |
Represents a modifiable Distribution family
default_params
Get or set (non-recursive) default parameters of a Distribution
param_bounds
Get or set (non-recursive) parameter bounds (box constraints) of a Distribution
new()
Distribution$new(type, caps, params, name, default_params)
type
Type of distribution. This is a string constant for the
default implementation. Distributions with non-constant type must
override the get_type()
function.
caps
Character vector of capabilities to fuel the default
implementations of has_capability()
and require_capability()
.
Distributions with dynamic capabilities must override the
has_capability()
function.
params
Initial parameter bounds structure, backing the
param_bounds
active binding (usually a list of intervals).
name
Name of the Distribution class. Should be CamelCase
and end
with "Distribution"
.
default_params
Initial fixed parameters backing the
default_params
active binding (usually a list of numeric / NULLs).
Construct a Distribution instance
Used internally by the dist_*
functions.
sample()
Distribution$sample(n, with_params = list())
n
number of samples to draw.
with_params
Distribution parameters to use.
Each parameter value can also be a numeric vector of length n
. In that
case the i
-th sample will use the i
-th parameters.
Sample from a Distribution
A length n
vector of i.i.d. random samples from the
Distribution with the specified parameters.
dist_exponential(rate = 2.0)$sample(10)
density()
Distribution$density(x, log = FALSE, with_params = list())
x
Vector of points to evaluate the density at.
log
Flag. If TRUE
, return the log-density instead.
with_params
Distribution parameters to use.
Each parameter value can also be a numeric vector of length length(x)
.
In that case, the i
-th density point will use the i
-th parameters.
Density of a Distribution
A numeric vector of (log-)densities
dist_exponential()$density(c(1.0, 2.0), with_params = list(rate = 2.0))
tf_logdensity()
Distribution$tf_logdensity()
Compile a TensorFlow function for log-density evaluation
A tf_function
taking arguments x
and args
returning the
log-density of the Distribution evaluated at x
with parameters args
.
probability()
Distribution$probability( q, lower.tail = TRUE, log.p = FALSE, with_params = list() )
q
Vector of points to evaluate the probability function at.
lower.tail
If TRUE
, return P(X <= q). Otherwise return P(X > q).
log.p
If TRUE
, probabilities are returned as log(p)
.
with_params
Distribution parameters to use.
Each parameter value can also be a numeric vector of length length(q)
.
In that case, the i
-th probability point will use the i
-th
parameters.
Cumulative probability of a Distribution
A numeric vector of (log-)probabilities
dist_exponential()$probability( c(1.0, 2.0), with_params = list(rate = 2.0) )
tf_logprobability()
Distribution$tf_logprobability()
Compile a TensorFlow function for log-probability evaluation
A tf_function
taking arguments qmin
, qmax
and args
returning the log-probability of the Distribution evaluated over the
closed interval [qmin
, qmax
] with parameters args
.
quantile()
Distribution$quantile( p, lower.tail = TRUE, log.p = FALSE, with_params = list() )
p
Vector of probabilities.
lower.tail
If TRUE
, return P(X <= q). Otherwise return P(X > q).
log.p
If TRUE
, probabilities are returned as log(p)
.
with_params
Distribution parameters to use.
Each parameter value can also be a numeric vector of length length(p)
.
In that case, the i
-th quantile will use the i
-th parameters.
Quantile function of a Distribution
A numeric vector of quantiles
dist_exponential()$quantile(c(0.1, 0.5), with_params = list(rate = 2.0))
hazard()
Distribution$hazard(x, log = FALSE, with_params = list())
x
Vector of points.
log
Flag. If TRUE
, return the log-hazard instead.
with_params
Distribution parameters to use.
Each parameter value can also be a numeric vector of length length(x)
.
In that case, the i
-th hazard point will use the i
-th parameters.
Hazard function of a Distribution
A numeric vector of (log-)hazards
dist_exponential(rate = 2.0)$hazard(c(1.0, 2.0))
diff_density()
Distribution$diff_density(x, log = FALSE, with_params = list())
x
Vector of points.
log
Flag. If TRUE
, return the gradient of the log-density
instead.
with_params
Distribution parameters to use.
Each parameter value can also be a numeric vector of length length(x)
.
In that case, the i
-th density point will use the i
-th parameters.
Gradients of the density of a Distribution
A list structure containing the (log-)density gradients of all
free parameters of the Distribution evaluated at x
.
dist_exponential()$diff_density( c(1.0, 2.0), with_params = list(rate = 2.0) )
diff_probability()
Distribution$diff_probability( q, lower.tail = TRUE, log.p = FALSE, with_params = list() )
q
Vector of points to evaluate the probability function at.
lower.tail
If TRUE
, return P(X <= q). Otherwise return P(X > q).
log.p
If TRUE
, probabilities are returned as log(p)
.
with_params
Distribution parameters to use.
Each parameter value can also be a numeric vector of length length(q)
.
In that case, the i
-th probability point will use the i
-th
parameters.
Gradients of the cumulative probability of a Distribution
A list structure containing the cumulative (log-)probability
gradients of all free parameters of the Distribution evaluated at q
.
dist_exponential()$diff_probability( c(1.0, 2.0), with_params = list(rate = 2.0) )
is_in_support()
Distribution$is_in_support(x, with_params = list())
x
Vector of points
with_params
Distribution parameters to use.
Each parameter value can also be a numeric vector of length length(x)
.
In that case, the i
-th point will use the i
-th parameters.
Determine if a value is in the support of a Distribution
A logical vector with the same length as x
indicating whether
x
is part of the support of the distribution given its parameters.
dist_exponential(rate = 1.0)$is_in_support(c(-1.0, 0.0, 1.0))
is_discrete_at()
Distribution$is_discrete_at(x, with_params = list())
x
Vector of points
with_params
Distribution parameters to use.
Each parameter value can also be a numeric vector of length length(x)
.
In that case, the i
-th point will use the i
-th parameters.
Determine if a value has positive probability
A logical vector with the same length as x
indicating whether
there is a positive probability mass at x
given the Distribution
parameters.
dist_dirac(point = 0.0)$is_discrete_at(c(0.0, 1.0))
tf_is_discrete_at()
Distribution$tf_is_discrete_at()
Compile a TensorFlow function for discrete support checking
A tf_function
taking arguments x
and args
returning whether
the Distribution has a point mass at x
given parameters args
.
has_capability()
Distribution$has_capability(caps)
caps
Character vector of capabilities
Check if a capability is present
A logical vector the same length as caps
.
dist_exponential()$has_capability("density")
get_type()
Distribution$get_type()
Get the type of a Distribution. Type can be one of discrete
,
continuous
or mixed
.
A string representing the type of the Distribution.
dist_exponential()$get_type() dist_dirac()$get_type() dist_mixture(list(dist_dirac(), dist_exponential()))$get_type() dist_mixture(list(dist_dirac(), dist_binomial()))$get_type()
get_components()
Distribution$get_components()
Get the component Distributions of a transformed Distribution.
A possibly empty list of Distributions
dist_trunc(dist_exponential())$get_components() dist_dirac()$get_components() dist_mixture(list(dist_exponential(), dist_gamma()))$get_components()
is_discrete()
Distribution$is_discrete()
Check if a Distribution is discrete, i.e. it has a density with respect to the counting measure.
TRUE
if the Distribution is discrete, FALSE
otherwise.
Note that mixed distributions are not discrete but can have point masses.
dist_exponential()$is_discrete() dist_dirac()$is_discrete()
is_continuous()
Distribution$is_continuous()
Check if a Distribution is continuous, i.e. it has a density with respect to the Lebesgue measure.
TRUE
if the Distribution is continuous, FALSE
otherwise.
Note that mixed distributions are not continuous.
dist_exponential()$is_continuous() dist_dirac()$is_continuous()
require_capability()
Distribution$require_capability( caps, fun_name = paste0(sys.call(-1)[[1]], "()") )
caps
Character vector of Capabilities to require
fun_name
Frienly text to use for generating the error message in case of failure.
Ensure that a Distribution has all required capabilities. Will throw an error if any capability is missing.
Invisibly TRUE
.
dist_exponential()$require_capability("diff_density")
get_dof()
Distribution$get_dof()
Get the number of degrees of freedom of a Distribution family. Only parameters without a fixed default are considered free.
An integer representing the degrees of freedom suitable e.g. for AIC calculations.
dist_exponential()$get_dof() dist_exponential(rate = 1.0)$get_dof()
get_placeholders()
Distribution$get_placeholders()
Get Placeholders of a Distribution family.
Returns a list of free parameters of the family.
Their values will be NULL
.
If the Distribution has Distributions as parameters, placeholders will be computed recursively.
A named list containing any combination of (named or unnamed)
lists and NULL
s.
dist_exponential()$get_placeholders() dist_mixture(list(dist_dirac(), dist_exponential()))$get_placeholders()
get_params()
Distribution$get_params(with_params = list())
with_params
Optional parameter overrides with the same structure
as dist$get_params()
. Given Parameter values are expected to be length
1.
Get a full list of parameters, possibly including placeholders.
A list representing the (recursive) parameter structure of the
Distribution with values for specified parameters and NULL
for free
parameters that are missing both in the Distributions parameters and in
with_params
.
dist_mixture(list(dist_dirac(), dist_exponential()))$get_params( with_params = list(probs = list(0.5, 0.5)) )
tf_make_constants()
Distribution$tf_make_constants(with_params = list())
with_params
Optional parameter overrides with the same structure
as dist$tf_make_constants()
. Given Parameter values are expected to be
length 1.
Get a list of constant TensorFlow parameters
A list representing the (recursive) constant parameters of the
Distribution with values sprecified by parameters. Each constant is a
TensorFlow Tensor of dtype floatx
.
tf_compile_params()
Distribution$tf_compile_params(input, name_prefix = "")
input
A keras layer to bind all outputs to
name_prefix
Prefix to use for layer names
Compile distribution parameters into tensorflow outputs
A list with two elements
outputs
a flat list of keras output layers, one for each parameter.
output_inflater
a function taking keras output layers and
transforming them into a list structure suitable for passing to the
loss function returned by tf_compile_model()
get_param_bounds()
Distribution$get_param_bounds()
Get Interval bounds on all Distribution parameters
A list representing the free (recursive) parameter structure of
the Distribution with Interval
objects as values representing the
bounds of the respective free parameters.
dist_mixture( list(dist_dirac(), dist_exponential()), probs = list(0.5, 0.5) )$get_param_bounds() dist_mixture( list(dist_dirac(), dist_exponential()) )$get_param_bounds() dist_genpareto()$get_param_bounds() dist_genpareto1()$get_param_bounds()
get_param_constraints()
Distribution$get_param_constraints()
Get additional (non-linear) equality constraints on Distribution parameters
NULL
if the box constraints specified by
dist$get_param_bounds()
are sufficient, or a function taking full
Distribution parameters and returning either a numeric vector
(which must be 0 for valid parameter combinations) or a list with
elements
constraints
: The numeric vector of constraints
jacobian
: The Jacobi matrix of the constraints with respect to the
parameters
dist_mixture( list(dist_dirac(), dist_exponential()) )$get_param_constraints()
export_functions()
Distribution$export_functions( name, envir = parent.frame(), with_params = list() )
name
common suffix of the exported functions
envir
Environment to export the functions to
with_params
Optional list of parameters to use as default values for the exported functions
Export sampling, density, probability and quantile functions to plain R functions
Creates new functions in envir
named {r,d,p,q}<name>
which implement
dist$sample
, dist$density
, dist$probability
and dist$quantile
as
plain functions with default arguments specified by with_params
or the
fixed parameters.
The resulting functions will have signatures taking all parameters as separate arguments.
Invisibly NULL
.
tmp_env <- new.env(parent = globalenv()) dist_exponential()$export_functions( name = "exp", envir = tmp_env, with_params = list(rate = 2.0) ) evalq( fitdistrplus::fitdist(rexp(100), "exp"), envir = tmp_env )
clone()
The objects of this class are cloneable with this method.
Distribution$clone(deep = FALSE)
deep
Whether to make a deep clone.
Other Distributions:
dist_bdegp()
,
dist_beta()
,
dist_binomial()
,
dist_blended()
,
dist_dirac()
,
dist_discrete()
,
dist_empirical()
,
dist_erlangmix()
,
dist_exponential()
,
dist_gamma()
,
dist_genpareto()
,
dist_lognormal()
,
dist_mixture()
,
dist_negbinomial()
,
dist_normal()
,
dist_pareto()
,
dist_poisson()
,
dist_translate()
,
dist_trunc()
,
dist_uniform()
,
dist_weibull()
# Example for param_bounds:
# Create an Exponential Distribution with rate constrained to (0, 2)
# instead of (0, Inf)
my_exp <- dist_exponential()
my_exp$param_bounds$rate <- interval(c(0, 2))
my_exp$get_param_bounds()
fit_dist(my_exp, rexp(100, rate = 3), start = list(rate = 1))$params$rate
## ------------------------------------------------
## Method `Distribution$sample`
## ------------------------------------------------
dist_exponential(rate = 2.0)$sample(10)
## ------------------------------------------------
## Method `Distribution$density`
## ------------------------------------------------
dist_exponential()$density(c(1.0, 2.0), with_params = list(rate = 2.0))
## ------------------------------------------------
## Method `Distribution$probability`
## ------------------------------------------------
dist_exponential()$probability(
c(1.0, 2.0),
with_params = list(rate = 2.0)
)
## ------------------------------------------------
## Method `Distribution$quantile`
## ------------------------------------------------
dist_exponential()$quantile(c(0.1, 0.5), with_params = list(rate = 2.0))
## ------------------------------------------------
## Method `Distribution$hazard`
## ------------------------------------------------
dist_exponential(rate = 2.0)$hazard(c(1.0, 2.0))
## ------------------------------------------------
## Method `Distribution$diff_density`
## ------------------------------------------------
dist_exponential()$diff_density(
c(1.0, 2.0),
with_params = list(rate = 2.0)
)
## ------------------------------------------------
## Method `Distribution$diff_probability`
## ------------------------------------------------
dist_exponential()$diff_probability(
c(1.0, 2.0),
with_params = list(rate = 2.0)
)
## ------------------------------------------------
## Method `Distribution$is_in_support`
## ------------------------------------------------
dist_exponential(rate = 1.0)$is_in_support(c(-1.0, 0.0, 1.0))
## ------------------------------------------------
## Method `Distribution$is_discrete_at`
## ------------------------------------------------
dist_dirac(point = 0.0)$is_discrete_at(c(0.0, 1.0))
## ------------------------------------------------
## Method `Distribution$has_capability`
## ------------------------------------------------
dist_exponential()$has_capability("density")
## ------------------------------------------------
## Method `Distribution$get_type`
## ------------------------------------------------
dist_exponential()$get_type()
dist_dirac()$get_type()
dist_mixture(list(dist_dirac(), dist_exponential()))$get_type()
dist_mixture(list(dist_dirac(), dist_binomial()))$get_type()
## ------------------------------------------------
## Method `Distribution$get_components`
## ------------------------------------------------
dist_trunc(dist_exponential())$get_components()
dist_dirac()$get_components()
dist_mixture(list(dist_exponential(), dist_gamma()))$get_components()
## ------------------------------------------------
## Method `Distribution$is_discrete`
## ------------------------------------------------
dist_exponential()$is_discrete()
dist_dirac()$is_discrete()
## ------------------------------------------------
## Method `Distribution$is_continuous`
## ------------------------------------------------
dist_exponential()$is_continuous()
dist_dirac()$is_continuous()
## ------------------------------------------------
## Method `Distribution$require_capability`
## ------------------------------------------------
dist_exponential()$require_capability("diff_density")
## ------------------------------------------------
## Method `Distribution$get_dof`
## ------------------------------------------------
dist_exponential()$get_dof()
dist_exponential(rate = 1.0)$get_dof()
## ------------------------------------------------
## Method `Distribution$get_placeholders`
## ------------------------------------------------
dist_exponential()$get_placeholders()
dist_mixture(list(dist_dirac(), dist_exponential()))$get_placeholders()
## ------------------------------------------------
## Method `Distribution$get_params`
## ------------------------------------------------
dist_mixture(list(dist_dirac(), dist_exponential()))$get_params(
with_params = list(probs = list(0.5, 0.5))
)
## ------------------------------------------------
## Method `Distribution$get_param_bounds`
## ------------------------------------------------
dist_mixture(
list(dist_dirac(), dist_exponential()),
probs = list(0.5, 0.5)
)$get_param_bounds()
dist_mixture(
list(dist_dirac(), dist_exponential())
)$get_param_bounds()
dist_genpareto()$get_param_bounds()
dist_genpareto1()$get_param_bounds()
## ------------------------------------------------
## Method `Distribution$get_param_constraints`
## ------------------------------------------------
dist_mixture(
list(dist_dirac(), dist_exponential())
)$get_param_constraints()
## ------------------------------------------------
## Method `Distribution$export_functions`
## ------------------------------------------------
tmp_env <- new.env(parent = globalenv())
dist_exponential()$export_functions(
name = "exp",
envir = tmp_env,
with_params = list(rate = 2.0)
)
evalq(
fitdistrplus::fitdist(rexp(100), "exp"),
envir = tmp_env
)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.